|Table of Contents|

Oscillation of Certain Neutral Hyperbolic Functional Differential Equations With Distributed Deviating Arguments(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2011年04期
Page:
13-16
Research Field:
数学
Publishing date:

Info

Title:
Oscillation of Certain Neutral Hyperbolic Functional Differential Equations With Distributed Deviating Arguments
Author(s):
Lin Wenxian
Department of Math and Information Technology,Hanshan Normal University,Chaozhou 521041,China
Keywords:
distributed deviating argumentshyperbolic oscillation generalized Riccati transformation
PACS:
O175.27
DOI:
-
Abstract:
The oscillation of a class of nonlinear neutral hyperbolic partial functional differential equations with distributed deviating arguments is studied. By employing the generalized Riccati transformation,some new sufficient conditions for oscillation of all solutions of such equations are obtained under Robin and Dirichlet boundary value conditions. The results generalize some the lastest results.

References:

[1] 何猛省,高述春. 双曲时滞偏微分方程解的振动性质[J]. 科学通报,1992,37( 13) : 1 163-1 166.
[2] 王培光,葛渭高. 一类非线性偏泛函微分方程的强迫振动性[J]. 系统科学与数学, 2000, 20( 4) : 454-461.
[3] 罗李平. 非线性中立双曲型偏泛函微分方程的振动性定理[J]. 数学杂志, 2010, 30( 6) : 1 023-1 028.
[4] 林文贤. 高阶非线性中立型偏微分方程的振动性[J]. 生物数学学报, 2003, 18( 1) : 8-14.
[5] 林文贤. 一类高阶中立型偏泛函微分方程的振动性[J]. 黑龙江大学学报: 自然科学版, 2006, 23( 4) : 25-30.
[6] 林文贤. 一类中立型双曲微分方程的振动性定理[J]. 应用数学, 2009,22( 3) : 514-519.
[7] Vladimirov V S. Equations of Mathematical Physics[M]. Moscow: Nauka, 1981.

Memo

Memo:
-
Last Update: 2013-03-21