|Table of Contents|

n-Order Circle Group Criterion of Mbius Transformation(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2011年04期
Page:
17-20
Research Field:
数学
Publishing date:

Info

Title:
n-Order Circle Group Criterion of Mbius Transformation
Author(s):
Gan Xinrong1Zhong Shouguo2
1.Science College,Wuhan University of Science & Technology,Wuhan,430065,China
Keywords:
circle groupMbius transformation square matrix criterion
PACS:
O152.3
DOI:
-
Abstract:
Translate the distinguish problem of n-order cyclic group in Mbius transformation ( MT) into the corresponding problem of n-power of square matrix 2 × 2. Educe two constracts Δ and δ as well as two number seguences Δn ,δ n related to Δ,δ. Use mathematical induction to prove the formulas that all the 4 elements after n-power of arbitrary square matrix 2 × 2 can be represented by Δn , and the recursion formulas of Δn . Finaly,the criterion is obtained that MT becomes a n-order cyclic mapping,and its application is given.

References:

[1] Ahlfors L V. Complex Analysis[M]. 3rd ed. New York: McG Rraw-Hill,1979.
[2] 李国平,郭友中,陈银通. 自守函数和闵可夫斯基函数[M]. 北京: 科学出版社,1979.
[3] 路见可,钟寿国,刘士强. 复变函数[M]. 武汉: 武汉大学出版社,2009.
[4] 华罗庚,万哲先. 典型群[M]. 上海: 上海科技出版社,1963.
[5] 李尚志. 典型群的子群结构[M]. 上海: 上海科技出版社,1998.
[6] 张远达. 有限群的构造[M]. 上海: 上海科技出版社,1987.
[7] Mills W H. On cyclic groups of Mobius transformations[J]. Math Scand,1973( 33) : 250-260.
[8] 赵文强,李嘉. Markov 积分半群的生成元[J]. 西南师范大学学报: 自然科学版,2007, 32( 5) : 14-17.
[9] 游兴中. GL( n,Q) 的有限群的阶的一个注记[J]. 四川大学学报: 自然科学版,2008, 45( 3) : 475-477.

Memo

Memo:
-
Last Update: 2013-03-21