|Table of Contents|

Classical and Quantum Dynamics of a Periodically Kicked Harmonic Oscillator(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2011年04期
Page:
49-54
Research Field:
物理学
Publishing date:

Info

Title:
Classical and Quantum Dynamics of a Periodically Kicked Harmonic Oscillator
Author(s):
Yang ShuangboWei Dong
School of Physics and Technology,Nanjing Normal University,Nanjing 210046,China
Keywords:
fractalstochastic webquantum dynamicsFloquet operatoreigenvaluequasienergy
PACS:
O413.1;O415.5
DOI:
-
Abstract:
This paper studies the classical and quantum dynamics of a periodically kicked Harmonic oscillator system. It is found that as we increase the kicking strength κ, and fractal takes place in classical phase space, the eigenvalue distribution of the one step time evolution operator will diffuse toward the center of the unit circle, from on the unit circle. When the eigenvalues are normalized,the normalized eigenvalue distribution will back to on the unit circle.

References:

[1] Heller E J,O’Connor P W,Gehlen J. The eigenfunctions of classical chaostic systems[J]. Physica Scripta, 1989,40: 354- 359.
[2] 汪昭,杨双波. 势阱中的混沌及量子对应[J]. 南京师大学报: 自然科学版, 2009,31( 3) : 31.
[3] Wintgen D,Marxer H,Briggs J S. Properties of off-shell coulomb radial wave functions[J]. J Phys A, 1987, 20: L965-L968.
[4] Casati D,Chirikov B V,Ford J,et al. Stochastic behavior of a quantum pendulum under periodic perturbation[M]. Lect Notes Phys, 1979 93: 334-352.
[5] Komogrove A N. On conservation of conditionally periodic motion for small change in Hamilton function[J]. Dokl Akad Nauk SSSR, 1954,98: 527-530.
[6] Arnold V I. Proof of a theorem of A. N. Komogrove of quasi-periodic motion[J]. Usp Mat Nauk SSSR, 1963, 18: 13-40.
[7] Moser J. On invariant curves of area-preserving mappings of an annulus[J]. Nachr Akad Wiss Gottingen Math—Phys, 1962, K1: 1-20.
[8] Zaslavsky G M,Zakharov My,Sagdeev R Z,et al. Stochastic web and diffusion of particles in a magnetic field [J]. Sov Phys JEPT, 1986, 64: 294-303.
[9] Hu Bambi,Li Baowen,Liu Jie,et al. Quantum chaos of a kicked particle in an infinite potential well [J]. Phys Rev Lett, 1999, 82: 4 224-4 227.
[10] Dana Itzhack,Amit Maty. General approach to diffusion of periodically kicked charges in a magnetic field [J]. Phys Rev E, 1995, 51: R2 731-R2 734.

Memo

Memo:
-
Last Update: 2013-03-21