|Table of Contents|

The Number of Perfect Matchings in Three Types of Graphs(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2012年01期
Page:
16-21
Research Field:
数学
Publishing date:

Info

Title:
The Number of Perfect Matchings in Three Types of Graphs
Author(s):
Tang Baoxiang1Ren Han2
1.School of Mathematics and Statistics,Tianshui Normal University,Tianshui 741001,China
Keywords:
perfect matchingrecurrence relationchessboard
PACS:
O157.5
DOI:
-
Abstract:
It is an interesting and important problem to count the number of the perfect matchings in graphs,since it origins from both physics and chemistry. But the problem of counting the number of the perfect matchings for general graphs is NP-difficult. In this paper,by applying differentiation,summation and re-recursion calculation,several counting formulas of the perfect matching for three specific types of graphs are given. By the method presented in this paper,many bipartite graphs of the number of all perfect matchings can be calculated.

References:

[1] Hall G G. A graphic model of a class of molecules[J]. Int J Math Edu Sci Technol,1973,4( 3) : 233-240.
[2] Pauling L. The Nature of Chemical Bond,Cornell[M]. New York: Ithaca Univ Press, 1939.
[3] Cyvin S J,Gutman I. Kekulé Structures in Benzennoid Hydrocarbons[M]. Berlin: Springer Press, 1988.
[4] Kasteleyn P W. Graph theory and crystal physics[C]/ / Harary F. Graph Theory and Theoretical Physics. London: Academic Press, 1967: 43-110.
[5] Lovász L,Plummer M. Matching Theory[M]. New York: North-Holland Press,1986.
[6] Clucu M. Enumeration of perfect matchings in graphs with reflective symmetry[J]. J Combin Theory Ser A, 1997, 77: 87-97.
[7] Fischer I,Little C H C. Even circuits of prescribed clockwise parity[J /OL]. Electro J Combin,2003,10: 1-20[2010-04- 20]. http: / /www. emis. ams. org /journals /EJC/Volume_10 /PDF/V1oi1r45. pdf
[8] Jockusch W. Perfect mathings and perfect squares[J]. J Combin Theory Ser A,1994,67: 100-115.
[9] Kasteleyn P W. The number of dimmer on a quadratic lattice[J]. Physica, 1961, 27( 12) : 1 209-1 225.
[10] Kasteleyn P W. Dimmer statistics and phase transition[J]. Math Phys, 1963,4 : 287-293.
[11] 于青林,刘桂真. 图的因子和匹配可扩性[M]. 北京: 高等教育出版社,2010.
[12] Brightwell G R,Winkler P,Hard C,et al. Adventures at the interface of combinatories and statistical physics[J]. ICM, 2002,3 : 605-624.
[13] Zhang Heping. The connectivity of Z-transformation graphs of perfect matchings of polyominoes[J]. Discrete Mathematics, 1996, 158: 257-272.
[14] Zhang Heping,Zhang Fuji. Perfect matchings of polyomino graphs[J]. Graphs and Combinatorics,1997, 13: 259-304.
[15] 张莲珠. 渺位四角系统完美匹配数的计算[J]. 厦门大学学报: 自然科学版,1998,37( 5) : 629-633.
[16] 张莲珠. 两类四角系统的匹配数与点独立集数[J]. 数学研究,1999,32( 3) : 97-102.
[17] 林泓,林晓霞. 若干四角系统完美匹配数的计算[J]. 福州大学学报: 自然科学版,2005,33 ( 6) : 704-710.
[18] Yan Weigen,Zhang Fuji. Enumeration of perfect matchings of a type of cartesian products of graphs[J]. Discrete Applied Mathematics,2006, 154: 145-157.
[19] 张洁,孙志人. 拟无爪泛圈图的一个充分条件[J]. 南京师大学报: 自然科学版,2009,32 ( 1) : 22-24.
[20] 晏卫根,叶永南. 一类运算图的匹配数[J]. 中国科学A 辑: 数学,2006,39( 9) : 1 014-1 022.
[21] 唐保祥,任韩. 几类图完美匹配的数目[J]. 南京师大学报: 自然科学版,2010,33 ( 3) : 1-6.
[22] 唐保祥,李刚,任韩. 3 类图完美匹配的数目[J]. 浙江大学学报: 理学版,2011,38 ( 4) : 16-19.

Memo

Memo:
-
Last Update: 2013-03-11