|Table of Contents|

A Characterization About Boundedness of L-Fuzzy Set and Variable Basis Powerset Linear Operator(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2012年01期
Page:
29-33
Research Field:
数学
Publishing date:

Info

Title:
A Characterization About Boundedness of L-Fuzzy Set and Variable Basis Powerset Linear Operator
Author(s):
Mao Minghua
Department of Mathematics,Nanjing Normal University Taizhou College,Taizhou 225300,China
Keywords:
L-fuzzy normed linear spaceL-fuzzy bounded setthe variable basis powerset linear operator
PACS:
O177;O159
DOI:
-
Abstract:
A characterization of the L-fuzzy bounded set and the boundedness of the variable basis powerset linear operator have been given. These results generalize the corresponding conclusions of fuzzy normed linear spaces and classical normed linear spaces.

References:

[1] Katsaras A K. Fuzzy topological vector spaces II[J]. Fuzzy Sets and Systems,1984, 12( 2) : 143-154.
[2] 吴从炘,方锦暄. Kolmogoroff 定理的fuzzy 推广[J]. 哈尔滨工业大学报, 1984, 16( 1) : 4-10.
[3] Fang Jinxuan. Fuzzy norm of a linear operator and fuzzy bounded linear operators[J]. J Fuzzy Math,1999,7 ( 3) : 755-764.
[4] Krishna S V,Sarma K K K. Separations of fuzzy normed linear spaces[J]. Fuzzy Sets and Systems,1994, 63( 2) : 207-217.
[5] 吴从炘,马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991.
[6] Yan Conghua,Fang Jinxuan. Generalization of Kolmogoroff’s theorem to L-topological spaces[J]. Fuzzy Sets and Systems, 2002, 125( 2) : 177-183.
[7] 王国俊. L-fuzzy 拓扑空间论[M]. 西安: 陕西师范大学出版社, 1988.
[8] Fang Jinxuan. The continuity of fuzzy linear order-homorphism[J]. J Fuzzy Math,1997,5( 4) : 829-838.

Memo

Memo:
-
Last Update: 2013-03-11