|Table of Contents|

Classical Dynamics and Quasi-Energy Spectral Statistics of a Periodically Kicked Harmonic Oscillator(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2012年03期
Page:
37-42
Research Field:
物理学
Publishing date:

Info

Title:
Classical Dynamics and Quasi-Energy Spectral Statistics of a Periodically Kicked Harmonic Oscillator
Author(s):
Yang ShuangboWei Dong
School of Physics and Technology,Nanjing Normal University,Nanjing 210046,China
Keywords:
chaosquasienergynearest neighbor spacing distributionspectral rigidityhigher moment
PACS:
O413.1
DOI:
-
Abstract:
This paper studies the classical dynamics and quasienergy spectral statistics for a periodically kicked Harmonic oscillator system,under the nonresonance condition. It is found that as we increase the kicking strength κ,and the phase space structure starts from tori for integrable system to completely chaotic for nonintegrable system, the nearest neighbor spacing distribution for the quasienergy spectral keeps the Poissonian distribution,and this is similar to that of the periodically kicked free rotor. The result of spectral rigidities shows that except the case of κ = 30,the rigidities for κ = 0. 13, 1. 6, 2. 0, 2. 6,bunched,increase linearly with L for L < 0. 1,and spread,increase nonlinearly with L,and the rigidity for κ = 0. 13 tends to saturation for L > 0. 1. The number variance Σ2 ,skewness γ1 ,excess γ2 are not sensitive to the change of κ.

References:

[1] Casati G,Chirikov B V,Ford J,et al. Stochastic behavior of a quantum pendulum under periodic perturbation[J]. Lect Notes Phys, 1979,93: 334-352.
[2] Wintgen D,Marxer H. Level statistics of a quantized cantori system[J]. Phys Rev Lett, 1988,60: 971-974.
[3] Kilbane D,Cummings A,O’Sullivan G,et al. Quantum statistics of a kicked particle in an infinite potential well[J]. Chaos, Solitons and Fractals,2006,30: 412-423.
[4] Heller E J,O’Connor P W,Gehlen J. The eigenfunctions of classical chaostic systems[J]. Physica Scripta, 1989,40: 354- 359.
[5] 杨双波,韦栋. 周期受击简谐振子系统的经典与量子动力学[J]. 南京师大学报: 自然科学版, 2011, 34( 4) : 49-54.
[6] Izrailev F M. Simple models of quantum chaos: spectrum and eigenfunctions[J]. Phys Rep,1990,196: 299-399.
[7] Casti G,Chirikov B V,Guarneri I. Energy-level statistics of integrable quantum systems[J]. Phys Rev Lett,1985,54: 1 350-1 353.
[8] Honig A,Wintgen D. Spectral properties of strongly perturbed Coulomb systems: fluctuation properties[J]. Phys Rev A, 1989,39: 5 642-5 656.
[9] 汪昭,杨双波. 势阱中的混沌及量子对应[J]. 南京师大学报: 自然科学版, 2009,32( 3) : 31-36.

Memo

Memo:
-
Last Update: 2013-03-11