|Table of Contents|

Bogdanov-Takens Bifurcation Analysis of an Epidemic Model(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2012年04期
Page:
7-13
Research Field:
数学
Publishing date:

Info

Title:
Bogdanov-Takens Bifurcation Analysis of an Epidemic Model
Author(s):
Wan Hui 1Li Yongfeng 2
1.Jiangsu Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
Keywords:
epidemic modelmedical resourceBogdanov-Takens bifurcation codimension 2
PACS:
O175
DOI:
-
Abstract:
In this paper,a SIR epidemic model is proposed to understand the impact of limited medical resource on infectious disease transmission, and Bogdanov-Takens bifurcation is analyzed. Our results suggest that the model may exhibit vital dynamics when the basic reproduction number R0 is equal to a subthreshold value and the unique equilibrium is a cusp of codimension 2.

References:

[1] Alexander M E,Moghadas S M. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Math Biosci, 2004, 189: 75-96.
[2] Hethcote H W. Mathematics of infectious diseases[J]. SIAM Review, 2000, 42: 599-653.
[3] Hu Z,Teng Z, Jiang H. Stability analysis in a class of discrete SIRS epidemic models[J]. Nonlinear Analysis: Real World Applications, 2012, 13: 2 017-2 033.
[4] Shi X,Cui J,Zhou X. Stability and Hopf bifurcation analysis of an eco-epidemic model with a stage structure[J]. Nonlinear Analysis, 2011, 74: 1 088-1 106.
[5] Wan H,Zhu H. The backward bifurcation in comportmental models for West Nile virus[J]. Mathematical Biosciences, 2010, 227: 20-28.
[6] Wang W. Backward bifurcation of an epidemic model with treatment[J]. Math Biosci, 2006, 201: 58-71.
[7] Zhang X,Liu X. Backward bifurcation of an epidemic model with saturated treatment function[J]. J Math Anal Appl, 2008, 348: 433-443.
[8] van den Driessche P,Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci, 2002, 180: 29-48.
[9] Kuznetsov Y A. Elements of Applied Bifurcation Theory,Applied Mathematical Sciences [M]. New York: Springer- Verlag, 1995.
[10] Busenberg S,Cooke K. Vertically Transmitted Diseases[M]. New York: Springer-Verlag, 1993.

Memo

Memo:
-
Last Update: 2013-03-11