|Table of Contents|

Concurrence of Anisotropic XY Chains With Three-Site Interactions(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2012年04期
Page:
25-29
Research Field:
物理学
Publishing date:

Info

Title:
Concurrence of Anisotropic XY Chains With Three-Site Interactions
Author(s):
Liu Xiaoxian1Zhong Ming1Chen Bo2
1.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
Keywords:
anisotropic XY chains three-site interactionsquantum phase transitionquantum entanglement concurrence
PACS:
O431.2
DOI:
-
Abstract:
Quantum phase transitions and quantum entanglement of anisotropic XY chains with the XZY - YZX type of three-site interaction are discussed. The behaviors of concurrence near the critical points is studied numerically. It is found that the behaviors of concurrence can furnish a dramatic signature of the quantum critical point.

References:

[1] Thouless D J. Exchange in solid 3He and the Heisenberg Hamiltonian[J]. Proc Phys Soc London, 1965, 86( 5) : 893-904.
[2] Roger M,Hetherington J H,Delrieu J M. Magnetism in solid 3He[J]. Rev Mod Phys, 1983, 55( 1) : 1-64.
[3] Jedrak J,Spalek J. Renormalized mean-field t-J model of high-Tc superconductivity: comparison to experiment[J]. Phys Rev B, 2011, 83( 10) : 104512-1—104512-7.
[4] Hao X,Zhu S Q. Quantum communication in spin chain with multiple spin exchange interaction[J]. Commun Theor Phys, 2010, 53( 6) : 1 083-1 086.
[5] Schmidt K P,Dorier J,Lauchli A M. Solids and supersolids of three-body interacting polar molecules on an optical lattice[J]. Phys Rev Lett, 2008, 101( 15) : 150405-1—150405-4.
[6] Pachos J K,Plenio M B. Three-spin interactions in optical lattices and criticality in cluster hamiltonians[J]. Phys Rev Lett, 2004, 93( 5) , 056402-1—056402-4.
[7] Peng X H,Zhang J F,Du J F, et al. Quantum simulation of a system with competing two-and three-body interactions[J]. Phys Rev Lett, 2009, 103( 14) : 140501-1—140501-4.
[8] Tsvelik A M. Incommensurate phase of quantum one-dimensional magnetics[J]. Phys Rev B, 1990, 42( 1) : 779-785.
[9] Zvyagin A A. Quantum phase transitions in an exactly solvable quantum-spin biaxial model with multiple spin interactions [J]. Phys Rev B, 2009, 80( 1) : 014414-1—014414-7.
[10] Krokhmalskii T,Derzhko O,Stolze J, et al. Dynamic properties of the spin - 1 /2 XY chain with three-site interactions[J]. Phys Rev B, 2008, 77( 17) : 174404-1—174404-13.
[11] Derzhko V,Derzhko O,Richter J. Exact solution of a the spin - 1 /2 XX chain with three-site interactions in a rondom transverse field: influence of randomness on the quantum phase transition[J]. Phys Rev B, 2011, 83( 17) : 174428-1—174428-10.
[12] Yang M F. Reexamination of entanglement and the quantum phase transition[J]. Phys Rev A, 2005, 71( 3) : 030302-1( R) — 030302-4( R) .
[13] Suzuki M. The dimer problem and the generalized XY-model[J]. Phys Lett A, 1971, 34( 5) : 338-339.
[14] Cheng W W,Liu J M. Fidelity susceptibility approach to quantum phase transitions in the XY spin chain with multisite interactions [J]. Phys Rev A, 2010, 82( 1) : 012308-1—012308-5.
[15] Cheng W W,Liu J M. Disentanglement from spin environment: role of multisite interaction[J]. Phys Rev A,2010,81( 4) : 044304-1—044304-4.
[16] Liu X X,Zhong M,Xu H, et al. Chiral phase and quantum phase transitions of anisotropic XY chains with three-site interactions [J]. J Stat Mech, 2012,P01003: 1-16.
[17] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Phys Rev Lett, 1998, 80( 10) : 2 245-2 248.

Memo

Memo:
-
Last Update: 2013-03-11