|Table of Contents|

Torsion-Induced Behaviors of Single-Walled and Double-Walled Carbon Nanotubes(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2012年04期
Page:
30-33
Research Field:
物理学
Publishing date:

Info

Title:
Torsion-Induced Behaviors of Single-Walled and Double-Walled Carbon Nanotubes
Author(s):
Cheng ChengpingChen GuihuLi WeihongLuo Chenglin
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
Keywords:
classical molecular dynamics carbon nanotubes torsional mechanical behavior
PACS:
TB383.1;O613.71
DOI:
-
Abstract:
We calculate and analyze the torsional mechanical behavior of single-walled and double-walled carbon nanotubes using classical molecular dynamics. It is found that the torsional stiffness is nearly independent of their structures for double-walled carbon nanotubes( DWCNTs) with same diameter and length. However, if outer tube of the DWCNT is zigzag-type, its axial stress will extend the DWCNT,whereas other type of outer tube will shrink the DWCNT. These results are very important for designing of the nano-electro-mechanical systems( NEMS) .

References:

[1] Tzahi C K,Lior S,Onit S L, et al. Torsional electromechanical quantum oscillations in carbon nanotubes[J]. Nature Nanotechnology 1, 2006, 57: 36-41.
[2] Smalley R E,Yakobson B I. The future of the fullerenes[J]. Solid State Commun, 1998, 107( 11) : 597-606.
[3] Baughman R H,Zakhidov A A,de Heer W A. Carbon nanotubes—the route toward applications[J]. Science,2002,297
( 5582) : 787-792.
[4] Craighead H G. Nanoelectromechanical systems[J]. Science, 2000, 290( 5496) : 1 532-1 535.
[5] Williams P A,Papadakis S J,Patel A M, et al. Torsional response and stiffening of individual multiwalled carbon nanotubes [J]. Phys Rev Lett, 2002, 89( 25) : 255502-1-255502-4.
[6] Jeong B W,Lim J K,Sinnott S B. Torsional stiffening of carbon nanotube systems[J]. Applied Physics Letters, 2007, 91( 9) : 093102-1-093102-3.
[7] Zhao R J,Luo C L. Torsion-induced mechanical couplings of single-walled carbon nanotubes[J]. Appl Phys Lett,2011,99 ( 23) : 231904-1-231904-3.
[8] Stuart S J,Tutein A B,Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. J Chem Phys, 2000, 112( 14) : 6 472-6 486.
[9] 韩同伟,贺鹏飞. 石墨烯弛豫性能的分子动力学模拟[J]. 物理学报, 2010, 59( 5) : 3 408-3 413.
[10] Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[J]. Phys Rev B, 1990, 42( 15) : 9 458-9 471.
[11] Brenner D W,Harrison J A,White C T, et al. Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene[J]. Thin Solid Films, 1991, 206( 1 /2) : 220-223.
[12] Allen M P,Tildesley D J. Computer Simulation of Liquids[M]. Clarendon,Oxford: Oxford Science Publications, 1987: 20-23.
[13] Lennard-Jones J E. On the determination of molecular fields. Ⅰ. From the variation of the viscosity of a gas with temperature [J]. Proc R Soc A, 1924, 106( 738) : 441-462.
[14] 田建辉,韩旭,刘桂荣,等. SiC 纳米杆的弛豫性能研究[J]. 物理学报, 2007, 56( 2) : 643-648.
[15] Chang T C. Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependent[J]. Appl Phys Lett, 2007, 90( 21) : 201910-1-201910-3.
[16] Jeong B W,Lim J K,Sinnott S B. Torsional stiffening of carbon nanotube systems[J]. Appl Phys Lett, 2007, 91( 9) : 093102- 1-093102-3.

Memo

Memo:
-
Last Update: 2013-03-11