[1] Rosario N Mantegna,H Eugene Stanley. An Introduction to Econophysics: Correlations and Complexity in Finance[M]. Cambridge: Cambridge University Press, 2000.
[2] 汪志诚. 热力学·统计物理[M]. 3 版. 北京: 高等教育出版社, 2003.
[3] Rosario N Mantegna,H Eugene Stanley. Scaling behavior in the dynamics of an economic index[J]. Nature, 1995, 376( 6) : 46-49.
[4] Johannes A Skjeltorp. Scaling in the Norwegian stock market[J]. Physica A, 2000, 283: 486-528.
[5] 都国雄,宁宣熙. 我国股市收益概率分布的统计特性分析[J]. 中国管理科学, 2007, 15( 5) : 16-22.
[6] Parameswaran Gopikrishnan,Vasiliki Plerou,Luyís A Nunes Amaral, et al. Scaling of the distribution of fluctuations of financial market indices[J]. Physical Review E, 1999, 60( 5) : 5 305-5 316.
[7] Mariani M C,Libbin J D. Long correlations and normalized truncated levy models applied to the study of Indian Market Indices in comparison with other emerging markets[J]. Physica A, 2008, 387: 1 273-1 282.
[8] Couto Miranda L,Riera R. Truncated Lévy walks and an emerging market economic index[J]. Physica A,2001,297: 509-520.
[9] Iram Gleria. Scaling power laws in the Sao Paulo Stock Exchange[J]. Economics Bulletin, 2002,7 ( 3) : 1-12.
[10] Bartolozzia M,Leinwebera D B,Thomas A W. Self-organized criticality and stock market dynamics: an empirical study[J]. Physica A, 2005, 350: 451-465.
[11] Zoltán Palági,Rosario N Mantegna. Empirical investigation of stock price dynamics in an emerging market[J]. Physica A, 1999, 269: 132-139.
[12] Marco Raberto,Enrico Scalas,Gianaurelio Cuniberti, et al. Volatility in the Italian stock market: an empirical study[J]. Physica A, 1999, 269: 148-155.
[13] Pilar Grau-Carles. Empirical evidence of long-range correlations in stock returns[J]. Physica A, 2000, 287: 396-404.
[14] Rogerio L Costa,Vasconcelos G L. Long-range correlations and nonstationarity in the Brazilian stock market[J]. Physica A, 2003, 329: 231-248.
[15] 魏宇,黄登仕. 中国股票市场波动持久性特征的DFA 分析[J]. 中国管理科学, 2004, 12( 4) : 12-19.
[16] Daniel O Cajueiro,Benjamin M Tabak. Testing for time-varying long-range dependence in volatility for emerging markets[J]. Physica A, 2005, 346: 577-588.
[17] 都国雄,宁宣熙,胡永生. 基于DFA 的我国股票市场标度特性研究[J]. 南京师大学报: 自然科学版,2007,30 ( 3) : 48-53.
[18] 都国雄. 基于R/S 分析的我国股票市场标度特性研究[J]. 数学的实践与认识, 2008, 38( 22) : 23-32.
[19] Liu Y,Gopikrishman P,Cizeau P,et al. Statistical properties of the volatility of price fluctuations[J]. Physical Review E, 1999, 60( 2) : 1 390-1 400.
[20] 都国雄,宁宣熙. 我国上证综指波动率的统计特性分析[J]. 东南大学学报: 哲学社会科学版, 2007,9 ( 5) : 32-35.
[21] Qiu T,Zheng B,Ren F, et al. Statistical properties of German Dax and Chinese indices[J]. Physica A, 2007, 378: 387-398.
[22] Sun Xia,Chen Huiping,Wu Ziqin, et al. Multifractal analysis of Hang Seng index in Hong Kong stock market[J]. Physica A, 2001, 291: 553-562.
[23] Sun Xia,Chen Huiping,Yuan Yongzhuang, et al. Predictability of multifractal analysis of Hang Seng stock index in Hong Kong [J]. Physica A, 2001, 301: 473-482.
[24] Hiroaki Katsuragi. Evidence of multi-affinity in the Japanese stock market[J]. Physica A, 2000, 278: 275-281.
[25] Ding-Shun Ho,Chung-Kung Lee,Cheng-Cai Wang, et al. Scaling characteristics in the Taiwan stock market[J]. Physica A, 2004, 332: 448-460.
[26] Oswiecimka P,Kwapien J,Drozdz S. Multifractality in the stock market: price increments versus waiting times[J]. Physica A, 2005, 347: 626-638.
[27] 都国雄,宁宣熙. 上海证券市场的多重分形特性分析[J]. 系统工程理论与实践, 2007, 27( 10) : 40-47.
[28] Ying Yuan,Zhuang Xintian. Multifractal description of stock price index fluctuation using a quadratic function fitting[J]. Physica A, 2008, 387: 511-518.
[29] Jiang Zhiqiang,Zhou Weixing. Multifractal analysis of Chinese stock volatilities based on the partition function approach[J]. Physica A, 2008, 387: 4 881-4 888.
[30] 何建敏,常松. 中国股票市场多重分形游走及其预测[J]. 中国管理科学, 2002, 10( 3) : 11-17.
[31] 卢方元. 中国股市收益率的多重分形分析[J]. 系统工程理论与实践, 2004( 6) : 50-54.