|Table of Contents|

Molecular Cloning and Characterization of an Endogenous White Spot Syndrome Virus Gene from Eriocheir Japonica Sinensis(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2012年04期
Page:
63-72
Research Field:
生命科学
Publishing date:

Info

Title:
Molecular Cloning and Characterization of an Endogenous White Spot Syndrome Virus Gene from Eriocheir Japonica Sinensis
Author(s):
Xie WenliLi PengJin FangcaoZhou Kaiya
Jiangsu Key Laboratory for Biodiversity and Biotechnology,School of Life Sciences,Nanjing Normal University,Nanjing 210023,China
Keywords:
Eriocheir japonica sinensisWSSVRACE cDNA cloning sequence analyses
PACS:
S945
DOI:
-
Abstract:
Based on expressed sequence tag( EST) and rapid amplification of cDNA ends( RACE) techniques,a WSSV gene designated as EjsWSSV was cloned and characterized from the Chinese mitten crab Eriocheir japonica sinensis. The full-length cDNA of EjsWSSV is 3 864 bp in size and contains an open reading frame of 3 732 bp which encodes a 1 243 amino acid polypeptide( 138. 25 kDa) with VWA domain. Sequence alignment, structure comparison and some bioinformatics analyses showed that EjsWSSV shared 100% similarity with WSSV genome ORF16 sequence. The bioinformatics analyses revealed that EjsWSSV had no putative signal peptide found and indicated that it was probably a non-secretory, alpha spiral and non-transmembrane protein. It was probably located in the cytoplasm. The PCR amplification results indicated that EjsWSSV was probably an endogenous virus gene of E. j. sinensis.

References:

[1] Wongteerasupaya C,Vickers J E,Sriurairatana S, et al. A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn Penaeus monodon[J]. Dis Aquat Organ, 1995, 21 ( 1) : 69-77.
[2] Chen L L,Leu J H,Huang C J, et al. Identification of a nucleocapsid protein( VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting vp35 to the nuclei of transfected insect cells[J]. Virology, 2002, 293 ( 1) : 44-53.
[3] van Hulten M C,Witteveldt J,Peters S, et al. The white spot syndrome virus DNA genome sequence[J]. Virology, 2001, 286( 1) : 7-22.
[4] Yang F,He J,Lin X G,et al. Complete genome sequence of the shrimp white spot bacilliform virus[J]. J Virol,2001,75 ( 23) : 11811-11820.
[5] Lo C F,Ho C H,Peng S E, et al. White spot syndrome baculovirus( WSBV) detected in cultured and captured shrimp, crabs and other arthropods[J]. Dis Aqua Organ, 1996, 27( 3) : 215-225.
[6] Wang Y C,Lo C H,Chang P S, et al. Experimental infection of white spot baculovirus in some cultured and wild decapods in Taiwan[J]. Aquaculture, 1998, 164( 1 /4) : 221-231.
[7] Chen L L,Lo C F,Chiu Y L, et al. Natural and experimental infection of white spot syndrome virus( WSSV) in benthic larvae of mud crab Scylla serrata[J]. Dis Aqua Organ, 2000, 40( 2) : 157-161.
[8] Sahul H A S,Xavier C M,Anilkumar M. Tolerance of Macrobrachium rosenbergii to white spot syndrome virus[J]. Aquaculture, 2000, 183( 3 /4) : 207-213.
[9] Sahul H A S,Yoganandhan K,Sathish S, et al. Experimental pathogenicity of white spot syndrome virus( WSSV) in two freshwater crabs( Partelphusa hydrodomous and P. pulvinata) [J]. Aquaculture, 2001, 201( 3 /4) : 179-186.
[10] Sahul H A S,Murthi B L M,Rasheed M, et al. An investigation of Artemia as a possible vector for white spot syndrome virus ( WSSV) transmission to Penaeus indicus[J]. Aquaculture, 2002, 204( 1 /2) : 1-10.
[11] Inouye K,Miwa S,Oseko N, et al. Mass mortalities of cultured Kuruma shrimp Penaeus japonicus in Japan in 1993: electron microscopic evidence of the causative virus[J]. Fish Pathol, 1994, 29( 2) : 149-158.
[12] Lightner D V. White Spot Syndrome Baculovirus Complex[M]/ /Lightner D V. A handbook of shrimp pathology and diagnostic procedures for disease of cultured penaeid shrimp. Baton Rouge,LO: World Aquaculture Society, 1996.
[13] Wang H C,Wang H C,Leu J H, et al. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection[J]. Dev Comp Immunol, 2007, 31( 7) : 672-86.
[14] Xu J Y,Han F,Zhang X B. Silencing shrimp white spot syndrome virus( WSSV) genes by siRNA[J]. Antiviral Res, 2007, 73 ( 2) : 126-131.
[15] Lei K,Li F,Zhang M,et al. Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense [J]. Dev Comp Immunol, 2008, 32( 7) : 808-813.
[16] Sarathi M,Nazeer Basha A,Ravi M, et al. Clearance of white spot syndrome virus( WSSV) and immunological changes in experimentally WSSV-injected Macrobrachium rosenbergii[J]. Fish & Shellfish Immunol, 2008, 25( 3) : 222-230.
[17] Hossain S M,Chakaraborty A, Joseph B, et al. Detection of new host for white spot syndrome virus of shrimp using nested polymerase chain reaction[J]. Aquaculture, 2001, 198( 1 /2) : 1-11.
[18] Kiran R B P,Rajendran K V, Jung S J, et al. Experimental susceptibility of different life-stages of the giant freshwater prawn, Machobrachium rosenbergii( de Man) , to white spot syndrome virus( WSSV) [J]. J Fish Dis, 2002, 25( 4) : 201-207.
[19] Sánchez-Paz A. White spot syndrome virus: An overview on an emergent concern[J]. Vet Res, 2010, 41( 6) : 43.[20] Lu C P. An introduction to the animal viruses in 8th report of ICTV[J]. Virol Sin, 2005, 20( 6) : 682-688.
[21] Kong Y B. Sequence analysis for the complete provial genome of endogenous ALV/SD0501 from SPF chicken and construction of infectious clone of pSD0501[D]. Jinan: Colloge of Life Sciences,Shandong Agricultural University, 2008.
[22] Mayer M P. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies[J]. Rev Physiol Biochem Pharmacol, 2005, 153: 1-46.
[23] Xu H,Yan F,Deng X B, et al. The interaction of white spot syndrome virus envelope protein VP28 with shrimp Hsc70 is specific and ATP-dependent[J]. Fish & Shellfish Immunol, 2009, 26( 3) : 414-421.
[24] Hu C Y,Tang C T. The role of endogenous retrovirus genes in the reproductive process[J]. J Reprod Med,1993,2 ( 4) : 245-247.
[25] Patience C,Takeuchi Y,Weiss R A. Infection of human cells by an endogenous retrovirus of pigs[J]. Nat Med, 1997,3 ( 3) : 282-286.
[26] Smith L M,Toye A A,Howes K, et al. Novel endogenous retroviral sequences in the chicken genome closely related to HPRS- 103( subgroup J) avian leukosis virus[J]. J Gen Virol, 1999, 80( pt 1) : 261-268.
[27] Yang Y Y,Qin A J,Gu Y F, et al. DNA cloning and sequence analysis of avian endogenous ALV-J gp85-like gene[J]. Chin J Virol, 2005, 21( 1) : 54-59.
[28] Yu P,Liu J,Zhang L,et al. Integration and expression of porcine endogenous retrovirus in the immortal cell line of Banna minipig inbred line-mesenchymal stem Cells[J]. J Sichuan Univ: Med Sci Edi, 2005, 36( 6) : 770-772.
[29] Tong S M,Yang Y Y,Zhao Z H, et al. Sequences analysis of avian endogenous ALV-J gp85-like gene[J]. Progress in Veterinary Medicine, 2007, 28( 1) : 17-21.
[30] Du W C,Li Y M,Zhu Z, et al. Molecular cloning and functional analysis of endogenous and exogenous Jaagsiekte retrovirus [J]. Tianjin Medical Journal, 2008, 36( 9) : 685-688.
[31] Li J Z,Yue M,Zhang J M, et al. Study on PERV gene in four stocks of mini-pigs[J]. Lab Anim Comp Med, 2008, 28( 3) : 160-163.
[32] Li P,Zha J,Sun H Y, et al. Identification of differentially expressed genes during the development of brachyurization in the Chinese mitten crab Eriocheir japonica sinensis[J]. Biochem Genet, 2011, 49( 9 /10) : 645-655.
[33] Altschul S F,Gish W,Miller W, et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215( 3) : 403-410.
[34] Altschul S F,Madden T L,Schffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25( 17) : 3389-3402.
[35] Nielsen H,Krogh A. Prediction of Signal Peptides and Signal Anchors by a Hidden Markov Model[C]/ /Glasgow. Proc Int Conf on Intel Sys Mol Biol. Madison: AAAI Press, 1998,6 : 122-130.
[36] Bendtsen J D,Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP 3. 0[J]. J Mol Biol, 2004, 340 ( 4) : 783-795.
[37] Gasteiger E,Hoogland C,Gattiker A, et al. Protein Identification and Analysis Tools on the ExPASy Server[M]/ /Walker J M. The proteomics protocols handbook. US: Humana Press, 2005: 571-607.
[38] Hulo N,Bairoch A,Bulliard V, et al. The 20 years of PROSITE[J]. Nucleic Acids Research, 2008, 36: D245-D249.
[39] De Castro E,Sigrist C J A,Gattiker A,et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins[J]. Nucleic Acids Res, 2006, 34( Web Server issue) : W362-W365.
[40] Schultz J,Milpetz F,Bork P,et al. SMART,a simple modular architecture research tool: identification of signaling domains [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 5857-5864.
[41] Letunic I,Doerks T,Bork P. SMART 6: recent updates and new developments[J]. Nucleic Acids Res, 2009, 37: D229-D232.
[42] Cserz M,Eisenhaber F,Eisenhaber B, et al. On filtering false positive transmembrane protein predictions[J]. Protein Eng, 2002, 15( 9) : 745-52.
[43] Lupas A,Van Dyke M,Stock J. Predicting coled coils from protein sequences[J]. Science, 1991, 252( 5010) : 1162-1164.
[44] Pollastri G,McLysaght A. Porter: a new, accurate server for protein secondary structure prediction[J]. Bioinformatics, 2005, 21 ( 8) : 1719-1720.
[45] Bennett-Lovsey R M,Hebert A D,Sternberg M J E, et al. Exploring the extremes of sequence /structure space with ensemble fold recognition in the program Phyre[J]. Proteins: structure, function,bioinformatics, 2008, 70( 3) : 611-625.
[46] Kelley L A,Sternberg M J E. Protein structure prediction on the web: a case study using the Phyre server[J]. Nat Protoc, 2009,4 ( 3) : 363-371.
[47] Sippl M J. Recognition of errors in three-dimensional structures of proteins[J]. Proteins, 1993, 17( 4) : 355-362.
[48] Wiederstein M,Sippl M J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins[J]. Nucleic Acids Res, 2007, 35( Web Server issue) : W407-W410.
[49] Bowie J U,Lüthy R,Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure [J]. Science, 1991, 253( 5016) : 164-170.
[50] Lüthy R,Bowie J U,Eisenberg D. Assessment of protein models with three-dimensional profiles[J]. Nature,1992,356 ( 6364) : 83-85.
[51] Li P,Zha J,Huang H, et al. Identification,mRNA expression and characterization of a novel ANK-like gene from Chinese mitten crab Eriocheir japonica sinensis[J]. Comp Biochem Physiol,Part B: Biochem Mol Biol, 2009, 153( 4) : 332-339.
[52] Sarathi M,Simon M C, Ishaq Ahmed V P, et al. Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA[J]. Marine Biotechnology, 2008, 10( 2) : 198-206.
[53] Li P,Zha J,Zhang Z H, et al. Molecular cloning,mRNA expression and characterization of Hsp90 gene from Chinese mitten crab Eriocheir japonica sinensis[J]. Comp Biochem Physiol,Part B: Biochem Mol Biol, 2009, 153( 3) : 229-235.
[54] Garcia M I,Perez M,Caruso M, et al. A mutation in the DE loop of the VP1 protein that prevents polyomavirus transcription and replication[J]. Viology, 2000, 272( 2) : 293-301.
[55] Tsai C W,Chang S C,Chang M F. A 12-amino acid stretch in the hypervariavle region of the spike protein S1 subunit is critical for cell fusion activity of mouse hepatitis virus[J]. J Biol Chem, 1999, 274( 37) : 26085-26090.
[56] Wyand M S,Manson K,Montefiori D C, et al. Protection by live, attenuated simian immunodeficiency virus against heterologous challenge[J]. J Virol, 1999, 73( 10) : 8356-8363.
[57] Bodogkoi Z,Erdelyi F,Fodor I. A putative latency promoter /enhancer( P( LAT2) ) region of pseudorabies virus contains a virulence determinant[J]. J Gen Virol, 2000, 81( 2) : 415-420.
[58] Lan Y S,Lu W,Xu X. Genomic instability of prawn white spot bacilliform virus( WSBV) and its association to virus virulence [J]. Virus Res, 2002, 90( 1 /2) : 269-274.
[59] Bork P. Shuffled domains in extracellular proteins[J]. FEBS Lett, 1991, 286( 1 /2) : 47-54.
[60] Perkins S J,Smith K F,Williams S C, et al. The secondary structure of the von Willebrand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. Its occurrence in collagen types Ⅵ,Ⅶ,Ⅻ and , the integrins and other proteins by averaged structure predictions[J]. J Mol Biol, 1994, 238( 1) : 104-119.
[61] Edwards Y J K,Perkins S J. The protein fold of the von Willebrand factor type A domain is predicted to be similar to the open twisted β-sheet flanked by α-helices found in human ras-p21[J]. FEBS Lett, 1995, 358( 3) : 283-286.
[62] Colombatti A,Bonaldo P,Doliana R. Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins[J]. Matrix, 1993, 13( 4) : 297-306.

Memo

Memo:
-
Last Update: 2013-03-11