|Table of Contents|

Center Determination Problem for a Class of Cubic System with a Pair of Invariant Conjugate Imaginary Straight Lines(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2013年01期
Page:
16-21
Research Field:
数学
Publishing date:

Info

Title:
Center Determination Problem for a Class of Cubic System with a Pair of Invariant Conjugate Imaginary Straight Lines
Author(s):
Sang Bo
School of Mathematics Sciences,Liaocheng University,Liaocheng 252059,China
Keywords:
cubic differential systemscenter conditionsintegrating factorsymmetry principle
PACS:
O175.12
DOI:
-
Abstract:
A class of cubic systems with a pair of invariant conjugate imaginary straight lines and a center-focus type singular point,is proved to have a center at the origin if and only if the first five focal values vanish.The presence of a center at the origin is proved by constructing integrating factor formed from invariant algebraic curves or by symmetry principle.

References:

[1] Sadovskii A P,Shcheglova T V.Solutions of the center focus problem for a nine-parameter cubic system[J].Differential Equations,2011,47(2):208-223.
[2]Liu Y R,Li J B.Theory of values of singular point in complex autonomous differential systems[J].Science in China A,1990,33(1):10-23.
[3]Lloyd N G,Pearson J M.Symmetry in planar dynamical systems[J].Journal of Symbolic Computation,2002,33(3):357-366.
[4]Cozma D.Darboux integrability in the cubic differential systems with three invariant straight lines[J].ROMAI J,2009,5(1):45-61.
[5]Cozma D,Suba A.Solution of the problem of the centre for a cubic differential system with three invariant straight lines[J].Qualitative Theory of Dynamical Systems,2001,2(1):129-143.
[6]Cozma D.Center problem for cubic systems with a bundle of two invariant straight lines and one invariant conic[J].Buletinul Academiei de Stiinte a Republicii Moldova:Matematica,2012,68(1):32-49.
[7]刘一戎,李继彬.平面向量场的若干经典问题[M].北京:科学出版社,2010.
[8]桑波,朱思铭.焦点量算法和中心条件推导[J].数学物理学报,2008,28(1):164-173.
[9]吴文俊.数学机械化[M].北京:科学出版社,2003.

Memo

Memo:
-
Last Update: 2013-03-31