[1] Guy R K.Unssolved Problems in Number Theory[M].New York:Springer Verlag,2004.
[2]Tao T,Vu V.Additive Eombinatorics[M].Cambridge:Cambridge University Press,2006.
[3]Erdös P,Sárközy A,Sós V T.On additive properties of general sequences[J].Discrete Math,1994,136:75-99.
[4]Tang M,Chen Y G.On additive properties of general sequences[J].Bull Austral Math Soc,2005,71:479-485.
[5]Chen Y G,Sárközy A,Sós V T,et al.On the monotonicity properties of additive representation functions[J].Bull Austral Math Soc,2005,72:129-138.
[6]Cauchy A L.Recherches sur les nombres[J].J Ecole Polytech,1813,9:99-116.
[7]Davenport H.On the addition of residue classes[J].J London Math Soc,1935,10:30-32.
[8]Pollard J M.A generalisation of the theorem of Cauchy and Davenport[J].J London Math Soc,1974,8:460-462.
[9]Pollard J M.Addition properties of residus classes[J].J London Math Soc,1975,11:147-152.
[10]Mann H B.Addition Theorems:The Addition Theorems of Group Theory and Number Theory[M].New York:Interscience Publ,1965.
[11]Nathanson M.Additive Number Theory:Inverse Problems and the Geometry of Sumsets[M].New York:Springer-Verlag,1996.
[12]Erdös P,Heilbronn H.On the addition of residue classes mod p[J].Acta Arith,1964,9:149-159.
[13]Rodseth ystein J.Sums of distinct residues mod p[J].Acta Arith,1993,25(2):181-184.
[14]Dias da Silva J A,Hamidoune Y O.Cyclic spaces for Grassmann derivatives and additive theory[J].Bull London Math Soc,1994,26(2):140-146.
[15]Vosper A G.The critical pairs of subsets of a group of prime order[J].J London Math Soc,1956,31:200-205.
[16]Kneser M.Ein Satz über abelsche gruppen mit anwendungen auf die geometrie der zahlen[J].Math Z,1955,64:429-434.
[17]Károlyi G.A compactness argument in the additive theory and the polynomial method[J].Discrete Math,2005,302(1/3):124-144.
[18]Hamidoune Y O,Rodseth ystein J.An inverse theorem mod p[J].Acta Arith,1993,25(2):181-184.
[14]Dias da Silva J A,Hamidoune Y O.Cyclic spaces for Grassmann derivatives and additive theory[J].Bull London Math Soc,1994,26(2):140-146.
[15]Vosper A G.The critical pairs of subsets of a group of prime order[J].J London Math Soc,1956,31:200-205.
[16]Kneser M.Ein Satz über abelsche gruppen mit anwendungen auf die geometrie der zahlen[J].Math Z,1955,64:429-434.
[17]Károlyi G.A compactness argument in the additive theory and the polynomial method[J].Discrete Math,2005,302(1/3):124-144.
[18]Hamidoune Y O,Rodseth ystein J.An inverse theorem mod .Acta Arith,2000,92(3):251-262.
[19]Hamidoune Y O,Serra O,Zémor G.On the critical pair theory in Z/pZ[J].Acta Arith,2006,121(2):99-15.
[20]Károlyi G.An inverse theorem for the restricted set addition in abelian groups[J].J Algebra,2005,290(2):557-593.
[21]Lev V F.Restricted set addition in groups.Ⅰ.The classical setting[J].J London Math Soc,2000,62(1):27-40.
[22]Bourgain J.Roth’s theorem on progressions revisited[J].J Anal Math,2008,104(1):155-192.
[23]Vu V H,Wood P M.The inverse Erdös-Heilbronn problem[J].The Electronic Journal of Combinatorics,2009,16(1):R100.
[24]Chowla I.A theorem on the addition of residue classes[J].Proc Indian Acad Sci,1935,2:242-243
[25]Sárközy A.Unsolved problems in number theory[J].Periodica Math Hungar,2001,42:17-35.