[1] Hethcote H W,Van den Driessche P.Some epidemiological models with norlear incidence[J].J Math Biol,1991,29(3):271-287.
[2]Li G H,Jin Z.Global stability of a SEIR epedemic model with infectious force in latent,infected and immune period[J].Chaos,Solitons Fractals,2005,25(5):1 177-1 184.
[3]Wang W D.Global behavior of an SEIRS epidemic model with time delays[J].Appl Math Letters,2002,15(4):423-428.
[4]Zhang T L,Teng Z D.Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence[J].Chaos,Solitons Fractals,2008,37(5):1 456-1 468.
[5]Cui J A,Sun Y H,Zhu H P.The impact of media on the control of infectious diseases[J].J Dynam Differential Equations,2008,20(1):31-53.
[6]Cui J A,Mu X X,Wan H.Saturation covery leads to multiple endemic equilibria and backward bifurcation[J].J Theor Biol,2008,254(2):275-283.
[7]Cui J A,Tao X,Zhu H P.An SIS infection model incorporating media coverage[J].Rocky Mountain J Math,2008,38(5):1 323-1 334.
[8]Li X Z,Zhou L L.Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate[J].Chaos,Solitons Fractals,2009,40(2):874-884.
[9]Sun C J,Lin Y P,Tang S P.Global stability for an special SEIR epidemic model with nonlinear incidence rates[J].Chaos,Solitons Fractals,2007,33(1):290-297.
[10]Li M Y,Smith H L,Wang L C.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM J Appl Math,2001,62(1):58-69.
[11]Grenhalgh D.Some results for an SEIR epidemic model with density dependence in the death rate[J].IMA J Math Appl Med Biol,1992,9(2):67-106.
[12]Greenhalgh D.Hopf bifurcation in epidemic models with a latent period and non-permanent immunity[J].Math Comput Model,1997,25(1):85-93.
[13]Li M Y,Muldoweney J S.Global stability for SEIR model in epidemiology[J].Math Biosci,1995,125(2):155-167.
[14]Qi L X,Cui J A.The stability of an SEIRS model with nonlinear incidence,vertical transmission and time delay[J].Appl Math Comput,2013,221:360-366.
[15]Li M Y,Muldoweney J S,Wang L C,et al.Global dynamics of an SEIR epi-demic model with a varying total population size[J].Math Biosci,1999,160:191-213.
[16]Zhang J,Ma Z E.Global stability of SEIR model with saturating contact rate[J].Math Biosci,2003,185(1):15-32.
[17]Liu W M,Levin S A,Iwasa Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].J Math Biol,1986,23(2):187-204.
[18]Busenberg S N,Cooke K L,Pozio M A.Analysis of a model of a vertically transmitted disease[J].J Math Biol,1983,17(3):305-329.
[19]Cooke K L,Busenberg S N.Vertical transmitted diseases[M]//Lakshmicantham.Nonlinear Phenomena in Mathematical Sciences.New York:Academic Press,1982:189-197.
[20]Fine P M.Vectors and vertical transmission,an epidemiological perspective[J].Annal N Y Acad Sci,1975,266:173-194.
[21]Michael Y,Smith H,Wang L.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM J Appl Math,2001,62:58-69.
[22]Busenberg S N,Cooke K L.Vertical Transmitted Diseases:Models and Dynamics.Biomathematics[M].Berlin:Springer-Verlag,1993:23-259.
[23]Busenberg S N,Cooke K L.The population dynamics of two vertically transmitted infections[J].Theor Popul Biol,1988,33(2):181-198.
[24]Bellenir K,Dresser P.Contagious and Non-contagious Infectious Diseases Source-book.Health Science Series 8[M].Detroit:Omnigraphics Inc.,1996:1-566.
[25]Cooke K,Van den Driessche P.Analysis of an SEIRS epidemic model with two delays[J].J Math Biol,1990,35(2):240-258.