|Table of Contents|

A Pressure Decoupled BGK Model for the Equations of Radiation Hydrodynamics

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2013年04期
Page:
5-
Research Field:
数学
Publishing date:

Info

Title:
A Pressure Decoupled BGK Model for the Equations of Radiation Hydrodynamics
Author(s):
Sun WenjunNi Guoxi
Beijing Institute of Applied Physics and Computational Mathematics,Beijing 100088,China
Keywords:
BGK modelradiation hydrodynamicszero diffusion2nd-order BGK scheme
PACS:
O241.8
DOI:
-
Abstract:
This paper concerns a kinetic scheme for the equations of radiation hydrodynamics by constructing a pressure decoupled BGK model,in which hydrodynamic and radiation pressures are decoupled.The merits have two aspects,on one hand,with this decoupled model,the actions of material and radiation can be decoupled easily,a more clear relation between the macroscopic equation and microscopic equation can be obtained,on the other hand,the construction of the scheme based on this model can be simplified greatly.A second order BGK scheme for the equations of multidimensional radiation hydrodynamics(RHE)in zero diffusion limit is also presented.Several one and two dimensional numerical examples demonstrate the performance of the new scheme.

References:

[1] Pomraning G C.The Equations of Radiation Hydrodynamics[M].Oxford:Pergamon Press,1973:1-281.
[2]Mihalas D,Mihalas B W.Foundations of Radiation Hydrodynamics[M].New York:Oxford University Press,1984:1-718.
[3]Dai W,Woodward P R.Numerical simulations for radiation hydrodynamics.Part Ⅰ:diffusion limit[J].J Comput Phys,1998,142:182-207.
[4]Reitz R D.One-dimensional compressible gas dynamics calculations using the Boltzmann equations[J].J Comput Phys,1981,42:108-123.
[5]Perthame B.Second-order Boltzmann scheme for compressible Euler equations in one and two space dimensions[J].SIAM J Numer Anal,1992,29:1-29.
[6]Mandal J C,Deshpande S M.Kinetic flux vector splitting for Euler equations[J].Computers and Fluids,1994,23:447-478.
[7]Chou S Y,Baganoff D.Kinetic flux-vector splitting for the Navier-Stokes equations[J].J Comput Phys,1997,130:217-230.
[8]Xu K,Martinelli I,Jameson A.Gas-kinetic finite volume methods,flux-vector splitting and artificial diffusion[J].J Comput Phys,1995,120:48-65.
[9]Prendergast K H,Xu K.Numerical hydrodynamics from gas-kinetic theory[J].J Comput Phys,1993,109:53-66.
[10]Jiang S,Ni G X.A γ-model BGK scheme for compressible multifluids[J].Int J Numer Meth Fluids,2004,46:163-182.
[11]Xu K,Kim C,Martinelli I,et al.BGK-based scheme for the simulation of compressible flow[J].Int J Comput Fluids Dynamics,1996,7:213-235.
[12]Tang H Z,Wu H M.Kinetic flux vector splitting for radiation hydrodynamical equations[J].Computers and Fluids,2000,29:917-933.
[13]Jiang S,Sun W J.A seconde order BGK scheme for the equations of radiation hydrodynamics[J].Int J Numer Meth Fluids,2007,53:391-416.
[14]Cercignani C.The Boltzmann Equation and Its Applications[M].Berlin,New York:Springer-Verlag,1988:1-451.
[15]Chapman S,Cowling T W.The Mathematical Theory of Non-Uniform Gases[M].3rd ed.Cambridge:Combridge Univ Press,1990:1-423.
[16]van Leer B.Towards the ultimate conservative difference schemes V.A second-order sequal to Godunov’s method[J].J Comput Phys,1979,32:101-136.
[17]Xu K.A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J].J Comput Phys,2001,171:289-335.

Memo

Memo:
-
Last Update: 2013-12-30