[1] Pomraning G C.The Equations of Radiation Hydrodynamics[M].Oxford:Pergamon Press,1973:1-281.
[2]Mihalas D,Mihalas B W.Foundations of Radiation Hydrodynamics[M].New York:Oxford University Press,1984:1-718.
[3]Dai W,Woodward P R.Numerical simulations for radiation hydrodynamics.Part Ⅰ:diffusion limit[J].J Comput Phys,1998,142:182-207.
[4]Reitz R D.One-dimensional compressible gas dynamics calculations using the Boltzmann equations[J].J Comput Phys,1981,42:108-123.
[5]Perthame B.Second-order Boltzmann scheme for compressible Euler equations in one and two space dimensions[J].SIAM J Numer Anal,1992,29:1-29.
[6]Mandal J C,Deshpande S M.Kinetic flux vector splitting for Euler equations[J].Computers and Fluids,1994,23:447-478.
[7]Chou S Y,Baganoff D.Kinetic flux-vector splitting for the Navier-Stokes equations[J].J Comput Phys,1997,130:217-230.
[8]Xu K,Martinelli I,Jameson A.Gas-kinetic finite volume methods,flux-vector splitting and artificial diffusion[J].J Comput Phys,1995,120:48-65.
[9]Prendergast K H,Xu K.Numerical hydrodynamics from gas-kinetic theory[J].J Comput Phys,1993,109:53-66.
[10]Jiang S,Ni G X.A γ-model BGK scheme for compressible multifluids[J].Int J Numer Meth Fluids,2004,46:163-182.
[11]Xu K,Kim C,Martinelli I,et al.BGK-based scheme for the simulation of compressible flow[J].Int J Comput Fluids Dynamics,1996,7:213-235.
[12]Tang H Z,Wu H M.Kinetic flux vector splitting for radiation hydrodynamical equations[J].Computers and Fluids,2000,29:917-933.
[13]Jiang S,Sun W J.A seconde order BGK scheme for the equations of radiation hydrodynamics[J].Int J Numer Meth Fluids,2007,53:391-416.
[14]Cercignani C.The Boltzmann Equation and Its Applications[M].Berlin,New York:Springer-Verlag,1988:1-451.
[15]Chapman S,Cowling T W.The Mathematical Theory of Non-Uniform Gases[M].3rd ed.Cambridge:Combridge Univ Press,1990:1-423.
[16]van Leer B.Towards the ultimate conservative difference schemes V.A second-order sequal to Godunov’s method[J].J Comput Phys,1979,32:101-136.
[17]Xu K.A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J].J Comput Phys,2001,171:289-335.