|Table of Contents|

Research of the Extraction Method of Event Properties Based on the Combining of HMM and Syntactic Analysis(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年01期
Page:
30-
Research Field:
计算机科学
Publishing date:

Info

Title:
Research of the Extraction Method of Event Properties Based on the Combining of HMM and Syntactic Analysis
Author(s):
Wu1Jiagao12Zhou Fankun12Zhang Xueying3
(1.School of Computer Science & Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China) (2.Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,Nanjing 210003 China) (3.MOE Key Laboratory of Virtual Geographic Environment,Nanjing Normal University,Nanjing 210023,China)
Keywords:
natural language processinginformation extraction of Chinese texthidden markov modelsyntactic analysistrigger words
PACS:
TP181
DOI:
-
Abstract:
Natural language processing technology is an important direction in the field of computer science and artificial intelligence,and the Chinese text information extraction is a new rising researching field in recent years.Due to the character of the loose structure of Chinese text,the flexibility of grammar and semanteme,the research of Chinese natural language processing has a difficult challenge nowadays.In the paper,a method of the combine of syntactic and HMM(Hidden Markov Model)was proposed.The main idea is to use syntax to analyze the Chinese text,then submit the syntactic structure to HMM and get a HMM model through learning it,finally the event properties can be extracted by the HMM model.The experiment shows that the method has higher precision and recall than normal algorithm.

References:

[1] Jiang Huixing,Wang Xiaojie,Tian Jilei.Second-order HMM for event extraction from short message[J].Lecture Notes in Computer Science,2010,6 177:149-156.
[2]Zhou Deyu,Yulan Heb.Biomedical events extraction using the hidden vector state model[J].Artificial Intelligence in Medicine,2011,53(3):205-213.
[3]Li Qing,Yuanzhu Peter Chen.Personalized text snippet extraction using statistical language models[J].Pattern Recognition,2010,43(1):378-386.
[4]Scheffer T,Decomain C,Wrobel S.Active hidden Markov models for information extraction[C]//Proceedings of the Interna-tional Symposium on Intelligent Data Analysis.Berlin:Springer,2001:301-109.
[5]Bolanle Ojokoh,Zhang Ming,Tang Jian.A trigram hidden Markov model for metadata extraction from heterogeneous references[J].Information Sciences,2011,181(9):1 538-1 551.
[6]Liu Jiangyang.Resolution to combinational ambiguity of Chinese word segmentation[C]//Proceedings of the International Conference on E-Learning,E-Business,Enterprise Information Systems,and E-Government,2009.Hongkong:IEEE,2009:141-145.
[7]袁里驰.基于依存关系的句法分析统计模型[J].中南大学学报:自然科学版,2009,40(6):1 630-1 635.
[8]张宴生.汉语定义语句的抽取方法[J].计算机与数字工程,2011,39(10):45-47.
[9]梁吉光,田俊华,姜杰.基于改进HMM的文本信息抽取模型[J].计算机工程,2011,37(20):178-182.
[10]Souyma Ray,Mark Craven.Representing sentence structure in hidden markov models for information extraction[C]//Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence.Washington:Morgan Kaufmann Publishers,2001:1 273-1 279.

Memo

Memo:
-
Last Update: 2014-03-30