|Table of Contents|

Periodic Solutions of a 2nthOrder Functional Difference Equation Containing Both Advance and Retardation(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年02期
Page:
39-
Research Field:
数学
Publishing date:

Info

Title:
Periodic Solutions of a 2nthOrder Functional Difference Equation Containing Both Advance and Retardation
Author(s):
Peng Gang1Cui Yan1Shi Haiping2
(1.School of Humanities and Social Sciences,Guangdong Lingnan Institute of Technology,Guangzhou 510663,China) (2.Modern Business and Management Department,Guangdong Construction Vocational Technology Institute,Guangzhou 510450,China)
Keywords:
functional difference equationperiodic solutionlinking theoremdiscrete variational theory
PACS:
O175.1
DOI:
-
Abstract:
The existence of periodic solutions to a 2nthorder functional difference equation containing both advance and retardation is studied.By using the critical point theory and transferring the existence of the periodic solutions of the equations into the existence of critical points of some functional,a sufficient condition for the existence of at least two nontrivial periodic solutions is obtained.Our result extends and improves some conclusions in the existing literatures.

References:

[1]郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1994.
[2]Agarwal R P.Difference Equations and Inequalities:Theory,Methods and Applications[M].New York:Marcel Dekker,1992.
[3]田淑环,王文丽.具有滞后、超前项的泛函差分方程的单调迭代技术[J].保定学院学报,2009,22(4):17-19.
[4]Yu Jianshe,Shi Haiping,Guo Zhiming.Homoclinic orbits for nonlinear difference equations containing both advance and retardation[J].J Math Anal Appl,2009,352(2):799-806.
[5]Chen Peng,Tang Xianhua.Existence of many homoclinic orbits for fourthorder difference systems containing both advance and retardation[J].Comput Math Appl,2011,217(9):4 408-4 415.
[6]Cai Xiaochun,Yu Jianshe,Guo Zhiming.Existence of periodic solutions for fourthorder difference equations[J].Comput Math Appl,2005,50(1/2):49-55.
[7]Cai Xiaochun,Yu Jianshe.Existence of periodic solutions for a 2nthorder nonlinear difference equation[J].J Math Anal Appl,2007,329(2):870-878.
[8]Rabinowitz P H.Minimax Methods in Critical Point Theory with Applications to Differential Equations[M].New York:Amer Math Soc,1986.

Memo

Memo:
-
Last Update: 2014-06-30