|Table of Contents|

Asymptotic Expansions of the Probability Density Function and theDistribution Function of Chi-Square Distribution(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年03期
Page:
39-
Research Field:
数学
Publishing date:

Info

Title:
Asymptotic Expansions of the Probability Density Function and theDistribution Function of Chi-Square Distribution
Author(s):
Chen Gang1Wang Mengjie2
(1.Basic Course Department,Nantong Vocation University,Nantong 226007 China)(2.School of Business,Centennial College,Toronto M1K 5E9,Canada)
Keywords:
χ2 distributionprobability density functiondistribution functionasymptotic expansionstandard transformation
PACS:
O211
DOI:
-
Abstract:
Through the transformation of the independent variable of χ2 distribution probability density function,degree of freedom of which is n,the equation can be expanded as follows: (2n)1/2χ2(x; n)=f(t; n)=[1+(r1(t))/(n1/2)+(r2(t))/n+(r3(t))/(nn1/2)+(r4(t))/(n2)] φ(t)+o(1/(n2)),here,φ(t)is a density function of standard normal distribution; ri(t)is a 3i order polynomial of t(1≤i≤4).An approximate formula can be obtained from the expansion of the distribution density function.We further establish the integral recurrence relations of the power coefficients of the standard normal density function and obtain the asymptotic expansion of the distribution function of χ2.Finally,the effectiveness of these results in practical application was verified by the numerical calculations.

References:

[1] 丁邦俊.t-分布密度函数的渐近展开[J].数理统计与应用概率,1998(4):307-310.
[2]茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].2版.北京:高等教育出版社,2011:283.
[3]菲赫金哥尔茨F M.微积分学教程(第二卷第二分册)[M].北京大学高等数学教研室,译.北京:人民教育出版社,1954:447-451.
[4]菲赫金哥尔茨F M.微积分学教程(第二卷第三分册)[M].徐献瑜,冷生明,梁文骐,等译.北京:人民教育出版社,1954:704-719.
[5]陈刚,黄超,林金官.具有高斯过程误差的函数型线性模型的统计诊断[J].应用数学与计算数学学报,2014(1):117-126.
[6]朱建国.一类次序统计量的数学期望[J].南通职业大学学报,2010(2):68-69.

Memo

Memo:
-
Last Update: 2014-09-30