|Table of Contents|

A New Preconditioned AOR Iterative Method forLinear System with M-Matrices(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年04期
Page:
7-
Research Field:
数学
Publishing date:

Info

Title:
A New Preconditioned AOR Iterative Method forLinear System with M-Matrices
Author(s):
Tan Xueyuan
Jiangsu Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
Keywords:
linear systemAOR iterative methodpreconditionerM-matrix
PACS:
O241.6
DOI:
-
Abstract:
The purpose of this paper is to investigate the preconditioned AOR method with a new preconditioner denoted as I+Sα+SM+Sδ for M-matrix.The new preconditioner is constructed by considering the largest absolute value of the upper triangular part,the secondary diagonal and the last column of the coefficient matrix A.We prove that the rate of the AOR iterative method can be accelerated,and give the comparison with other three preconditioners to show the new preconditioner is more effective.Numerical example demonstrates the effectiveness of this preconditioning scheme.

References:

[1] Hadjidimos A.Accelerated overrelaxation method[J].Math Comput,1978,32:149-157.
[2]Saad Y.Iterative Methods for Sparse Linear Systems[M].Boston:PWS Publishing Company,1996:95-102.
[3]Gunawardena A D,Jain S K,Snyder L.Modified iterative methods for consistent linear systems[J].Linear Algebra Appl,1991,154/156:123-143.
[4]Kohno T,Kotakemori H,Niki H.Improving the modified gauss-seidel method for Z-matrix[J].Linear Algebra Appl,1997,267:113-123.
[5]Wu M,Wang L,Song Y.Preconditioned AOR iterative method for linear system[J].Appl Numer Math,2007,57:672-685.
[6]Kotakemori H,Harada K,Morimoto M,et al.A comparison theorem for the iterative method with the preconditoner I+Sm[J].J Comput Appl Math,2002,145:373-378.[7]Morimoto M,Harada K,Sakakihara M,et al.The gauss-seidel iterative method with the preconditioned matrix I+S+Sm[J].Japan J Indust Appl Math,2004,21:25-34.
[8]Berman A,Plemmons R J.Nonnegaitve Matrices in the Mathematical Sciences[M].New York:Academic Press,1979:132-156.
[9]Varga R S.Matrix Iterative Analysis[M].2nd ed.Berlin:Springer-Verlag,2000:35-38.
[10]Wang L,Song Y.Preconditioned AOR iterative methods for M-matrices[J].J Comput Appl Math,2009,226:114-124.

Memo

Memo:
-
Last Update: 2014-12-31