|Table of Contents|

On the Diophantine Equation(65n)x+(72n)y=(97n)z(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年04期
Page:
28-
Research Field:
数学
Publishing date:

Info

Title:
On the Diophantine Equation(65n)x+(72n)y=(97n)z
Author(s):
Ma MimiWu Jiandong
School of Mathematical Sciences and Institute of Mathematics,Nanjing Normal University,Nanjing 210023,China
Keywords:
Jesmanowicz conjectureDiophantine equation
PACS:
O156.1,O156.7
DOI:
-
Abstract:
In this paper,we show that for any positive integer n,the Diophantine equation(65n)x+(72n)y=(97n)z has no solution other than(x,y,z)=(2,2,2)in positive integers.

References:

[1] Sierpiński W.On the Diophantine equation 3x+4y=5z[J].Wiadom Mat,1955,1:194-195.
[2]Jesmanowicz L.Several remarks on Pythagorean numbers[J].Wiadom Mat,1955,1:196-202.
[3]Miyazaki T.Generallizatioins of classical results on Jesmanowicz’ conjecture concerning Pythagorean triples[J].J Number Theory,2013,133:583-595.
[4]Deng M J,Cohen G L.On the conjecture of Jesmanowicz concerning Pythagorean triples[J].Bull Austral Math Soc,1998,57:515-524.
[5]Yang Z J,Tang M.On the diophantine equation(8n)x+(15n)y=(17n)z[J].Bull Austral Math Soc,2012,86:348-352.
[6]Sun C F,Cheng Z.A conjecture of Jesmanowicz’ concerning Pythangorean triples[J].Adv Math,2014,43:267-275.
[7]Le M H.A note on Jesmanowicz’conjecture concerning Pythangorean triples[J].Bull Austral Math Soc,1999,59:477-480.
[8]Deng M J.A note on the Diophantine equation(na)x+(nb)y=(nc)z[J].Bull Austral Math Soc,2014,89:316-321.

Memo

Memo:
-
Last Update: 2014-12-31