|Table of Contents|

A Self-Adaptive Projection Method with the BB-Step Sizes forSolving Generalized Nash Equilibrium Problems(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年04期
Page:
31-
Research Field:
数学
Publishing date:

Info

Title:
A Self-Adaptive Projection Method with the BB-Step Sizes forSolving Generalized Nash Equilibrium Problems
Author(s):
Bi PeipeiXu LinglingHan Deren
Jiangsu Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
Keywords:
generalized nash equilibrium problemquasi-variational inequality(QVI)projection methodBB-step sizesconvergence
PACS:
O242
DOI:
-
Abstract:
The generalized Nash equilibrium problem(GNEP)is a noncooperative game in which the strategy set of each player,as well as his payoff function,depend on the rival players’ strategies.It can be widely used in economics,management sciences and traffic assignment,but how to effective solve the generalized Nash equilibrium problem is still a subject of concern.In this paper,we present a self-adaptive projection method with the BB-step sizes for solving generalized Nash equilibrium problems:First,we give the reformulation of a generalized Nash equilibrium.Then,we extend the BB-step sizes to the QVI formulation of the GNEP,we adopt them in projection methods,and prove that under the condition that the underlying function is co-coercive,the sequence generated by the method converges to a solution of the quasi-variational inequality problem globally.Some preliminary computational results are reported,which illustrate that the new method is efficient.

References:

[1] Harker P.Generalized Nash games and quasi-variationalinequalities[J].Eur J Oper Res,1991,54(1):81-94.
[2]Zhang J Z,Qu B,Xiu N H.Some projection-like methods for the generalized Nash equilibria[J].Comput Optim Appl,2010,45(1):89-109.
[3]Contreras J,Krawczyk J,Klusch M.Numerical solutions to Nash-Cournotequilibria in coupledconstraint electricity markets[J].IEEE Trans Power Syst,2004,19(1):195-206.
[4]刘肇军,刘宗谦,冯素芬.有限策略型博弈中的相关策略与具有合约的博弈及其均衡[J].南京师大学报:自然科学版,2008,31(3):33-38.
[5]Facchinei F,Pang J S.Finite-Dimensional Variational Inequality and Complementarity Problems[M].New York:Springer.2003.
[6]Fukushima M,Pang J S.Quasi-variational inequalities,generalized Nash equilibria,and multieader-follower games[J].Comput Manag Sci,2005,2(1):21-56.
[7]Kubota K,Fukushim M.Gap function approach to the generalized Nash equilibrium problem[J].J Opt Theory Appl,2010,144(3):511-531.
[8]Heusinger A Von,Kanzow C.Optimization reformulations of the generalized Nash equilibriumproblem using Nikaido-Isoda-type functions[J].Comput Optim Appl,2009,43(3):353-377.
[9]Fukushima M.Restricted generalized Nash equilibria and controlled penalty algorithm[J].Comput Manag Sci,2011,8(3):201-218.
[10]Nabetani K,Tseng P,Fukushima M.Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints[J].Comput Optim Appl,2011,48(3):423-452.
[11]Dreves A,Kanzow C.Nonsmooth optimization reformulations characterizing all solutions of jointly convexgeneralized Nash equilibrium problems[J].Comput Optim Appl,2011,50(1):23-48.
[12]Heusinger A Von,Kanzow C,Fukushima M.Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation[J].Math Program,2012,132(1/2):99-123.
[13]Goldstein A.Convex programming in Hilbert space[J].Bull Amer Math Soc,1964,70:709-710.

[14]Khobotov E.Modification of the extragradient method for solving variational inequalities and certain optimization problems[J].USSR Comput Math Math Phys,1987,27(5):120-127.
[15]Barzilai J,Borwein J M.Two point step size gradient method[J].IMAJ Numer Anal,1988,8(1):141-148.
[16]Dai Y H,Liao L Z.R-linear convergence of the Barzilai and Borwein gradient method[J].IMAJ Numer Anal,2002,22(1):1-10.
[17]Marcos R.On the Barzilai and Borwein choice of steplength for the gradient method[J].IMAJ Numer Anal,1993,13(3):321-326.
[18]Han D R,Zhang H C,Gang Q,et al.An improved two-step method for solving generalized Nash equilibrium problems[J].Eur J Oper Res,2012,216:613-623.

Memo

Memo:
-
Last Update: 2014-12-31