|Table of Contents|

A Fast Node Localization Algorithm for Coal-mine UndergroundBased on RSSI(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年04期
Page:
158-
Research Field:
计算机科学
Publishing date:

Info

Title:
A Fast Node Localization Algorithm for Coal-mine UndergroundBased on RSSI
Author(s):
Xu XiaojuTang XiangHuang Weiyong
School of Information and Electrical Engineering,Xuzhou Institute of Technology,Xuzhou 221111,China
Keywords:
wireless sensor networks(WSN)coal-mine underground node localizationreceived signal strength indicator(RSSI)Gauss filterquantum-behaved particle swarm optimization(QPSO)
PACS:
TP393
DOI:
-
Abstract:
To improve the realtime performance of node localizationin in coal-mine underground wireless sensor networks,a fast node localization algorithm based on RSSI is proposed.On the base of the double-chain deployment structure of anchor nodes in coal-mine underground,the largest RSSI signals received from the anchor nodes are processed by the filter with Gauss density function,and the coordinates of the unknown nodes are calculated directly by the filtered RSSI signals and exponential factors.The exponential factors are optimized by an improved quantum-behaved particle swarm optimization algorithm and the criterion of the root mean square error minimum.The algorithm proposed has the advantage of fast positioning speed and low computational complexity and the simulation results verify the feasibility and effectiveness of the algorithm,which can be suitable for real time positioning system in coal mine underground wireless sensor networks.

References:

[1] 韩东升,杨维,刘洋,等.煤矿井下基于RSSI的加权质心定位算法[J].煤炭学报,2013,38(3):523-528.
[2]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868.
[3]乔钢柱,曾建潮.锚节点链式部署的井下无线传感器网络定位算法[J].煤炭学报,2010,35(7):1 229-1 233.
[4]Bulusu N,Heidemann J,Estrin D.GPS-less low cost outdoor localization for very small devices[J].IEEE Personal Communications,2000,7(5):28-34.
[5]方旺盛,高银.狭长直隧道环境中WSN的RSSI加权质心定位算法[J].传感技术学报,2014,27(2):247-251.
[6]李文辰,张雷.无线传感器网络加权质心定位算法研究[J].计算机仿真,2013,30(2):191-194.
[7]吴涛,严余松,陈曦.基于随机评价机制的量子粒子群优化算法及其参数控制[J].计算机应用,2013,30(10):2 815-2 818.
[8]詹杰同,吴伶锡,唐志军.无线传感器网络RSSI测距方法与精度分析[J].电讯技术,2010,50(4):73-87.
[9]陈丽,王学东,孙晶晶,等.基于改进高斯滤波的室内无线定位算法[J].电气自动化,2014,36(3):31-34.

Memo

Memo:
-
Last Update: 2014-12-31