|Table of Contents|

On Stability of Ding Projective Categories(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年01期
Page:
25-
Research Field:
数学
Publishing date:

Info

Title:
On Stability of Ding Projective Categories
Author(s):
Yan Xiaoguang1Xu Aimin2
(1.School of Mathematics and Information Technology,Nanjing Xiaozhuang University,Nanjing 211171,China)(2.School of Mathematical Sciences,Qufu Normal University,Qufu 273165,China)
Keywords:
Ding projective moduleDing projective complexstability
PACS:
O154.2
DOI:
-
Abstract:
We show that an iteration of the procedure used to define Ding projective modules yields exactly Ding projective modules. Then we introduce Ding projective complexes,and characterize those complexes by Ding projective modules. Moreover,we characterize n-FC rings with Ding projective dimension of complexes. Finally,we prove that the category of Ding projective complexes also has some kind of stability.

References:

[1] Auslander M,Bridger M. Stable module theory[J]. Mem Amer Math Soc,1969,94:1-146.
[2]Enochs E E,Jenda O M G. Gorenstein injective and projective modules[J]. Math Z,1995,220(4):611-633.
[3]Holm H. Gorenstein homological dimensions[J]. J Pure Appl Algebra,2004,189:167-193.
[4]Ding N Q,Li Y L,Mao L X. Strongly Gorenstein flat modules[J]. J Aust Math Soc,2009,86(3):323-338.
[5]Gillespie J. Model structure on modules over Ding-Chen rings[J]. Homology,Homotopy Appl,2010,12(1):61-73.
[6]Yang G,Liu Z K,Liang L. Ding projective and Ding injective modules[J]. Algebra Colloquim,2013,20(4):239-252.
[7]Sather-Wagstaff S,Sharif T,White D. Stability of Gorenstein categories[J]. J London Math Soc,2008,77:481-502.
[8]Enochs E E,Garcia Rozas J R. Gorenstein injective and projective complexes[J]. Comm Algebra,1998,26:1 657-1 674.
[9]Gillespie J. The flat model structure on Ch(R)[J]. Tran Amer Math Soc,2004,356(8):3 369-3 390.
[10]Enochs E E,Jenda O M G,Xu J Z. Orthogonality in the category of complexes[J]. Math J Okayama Univ,1996,38:25-46.
[11]Avramov L L,Foxby H B. Homological dimensions of unbounded complexes[J]. J Pure Appl Algebra,1991,71:129-155.
[12]Enochs E E,Garcia Rozas J R. Flat covers of complexes[J]. J Algebra,1998,210:86-102.
[13]Enochs E E,Garcia Rozas J R. Tensor products of complexes[J]. Math J Okayama Univ,1997,39:17-39.
[14]Mahdou N,Tamekkante M. Strongly Gorenstein flat modules and dimensions[J]. Chin Ann Math,2011,32B(4):533-548.
[15]Yang X Y,Liu Z K. Gorenstein projective,injective,and flat complexes[J]. Comm Algebra,2011,39:1 705-1 721.
[16]Colby R R. Rings wich have flat injective modules[J]. J Algebra,1975,35:239-252.
[17]Enochs E E,Jenda O M G. Relative Homological Algebra[M]. Berlin-New York:Walter de Gruyter,2000:214-254.
[18]Ding N Q,Chen J L. The flat dimensions of injective modules[J]. Manuscripta Math,1993,78:165-177.
[19]Holm H,Jogensen P. Cotorsion pairs induced by duality pairs[J]. J Commut Algebra,2009,1:621-633.
[20]Bennis D. Weak Gorenstein global dimension[J]. Int Electron J Algebra,2010,8:140-152.
[21]Enochs E E,Jenda O M G,Torrecillas B. Gorenstein flat modules[J]. Journal of Nanjing University Mathematical Biquarterly,1993,10:1-9.

Memo

Memo:
-
Last Update: 2015-03-30