|Table of Contents|

Solving Continuous Optimization Problem by WadingAcross Stream Algorithm(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年01期
Page:
108-
Research Field:
计算机科学
Publishing date:

Info

Title:
Solving Continuous Optimization Problem by WadingAcross Stream Algorithm
Author(s):
Gao Shang1Qiu Ling2Cao Cungen3
(1.School of Computer Science and Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)(2.Artificial Intelligence of Key Laboratory of Sichuan Province,Zigong 643000,China)(3.Key Lab of Intelligent Information Processing of Chinese Academy of Sciences,Institute of Computing Technology,Beijing 100190,China)
Keywords:
random optimization algorithmcontinuous space optimizationfast random optimization algorithmWading across Stream Algorithm
PACS:
TP18
DOI:
-
Abstract:
According to idea of Wading across the Stream by feeling the way,a kind of fast efficient random optimization algorithm is put forward. The Wading across Stream Algorithm(WSA)acts a solution as a start point,then searches several solutions randomly near the start point,and finds the best solution of these solutions. This best solution is to take as next start point,and then several random solutions near this start point are searched,and so on. For solving continuous optimization problem,the improved Wading across Stream Algorithm shrinks the search space gradually. The experiment results of some classic benchmark functions show that the proposed optimization algorithms improve extraordinarily the convergence velocity and precision.

References:

[1] Antamoshkin,Alexander N,Kazakovtsev,et al. Random search algorithm for the p-median problem[J]. Informatica(Slovenia),2013,37(3):267-278.
[2]葛振振,周军,林鹏. 采用改进模拟退火算法的高速飞行器随控总体优化方法[J]. 宇航学报,2013,34(11):1 427-1 433.
[3]黎渊,蒋江,张民选,等. 基于模拟退火算法的浮点转定点自动位宽优化工具[J]. 上海交通大学学报:中文版,2013,47(1):76-80,85.
[4]张琦,马家辰. 基于改进蚁群算法的移动机器人路径规划[J]. 东北大学学报:自然科学版,2013,34(11):1 521-1 524.
[5]Eberhart R C,Kennedy J. A new optimizer using particles swarm theory[C]//Proc Sixth International Symposium on Micro Machine and Human Science. Nagoya,Japan:IEEE Press,1995:39-43.
[6]Shi Y H,Eberhart R C. A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation. Anchorage. Alaska:IEEE Press,1998:69-73.
[7]Kennedy J,Eberhart R. Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks. Perth:IEEE Press,1995:1 942-1 948.
[8]郭通,兰巨龙. 自适应的分数阶达尔文粒子群优化算法[J]. 通信学报,2014,35(4):130-140.
[9]胡旺,GaryGYEN,张鑫. 基于Pareto熵的多目标粒子群优化算法[J]. 软件学报,2014,25(5):1 025-1 050.
[10]高尚,杨静宇. 群智能算法及其应用[M]. 北京:中国水利水电出版社,2006:112-117.
[11]高尚,杨静宇. 混沌粒子群优化算法研究[J]. 模式识别与人工智能,2006,19(2):266-270.

Memo

Memo:
-
Last Update: 2015-03-30