|Table of Contents|

Differential Evolution Algorithm for Multi-Objective OptimizationBased on Adaptive ε-Dominance(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年01期
Page:
119-
Research Field:
计算机科学
Publishing date:

Info

Title:
Differential Evolution Algorithm for Multi-Objective OptimizationBased on Adaptive ε-Dominance
Author(s):
Xu Jin12Gu Qiong13Cai Zhihua2Gong Wenyin2
(1.School of Mathematics and Computer Science,Hubei University of Arts and Science,Xiangyang 441053,China)(2.School of Computer Science,China University of Geosciences,Wuhan 430074,China)(3.Institute of Logic and Intelligence,Southwest University,Chongqing 400715,China)
Keywords:
multi-objective optimizationPareto optimal solutiondifferential evolutionorthogonal designadaptive ε-dominance
PACS:
TP301.6
DOI:
-
Abstract:
The purpose to solve multi-objective optimization is to get solutions closing to the true Pareto front as much as possible and having good diversity. To meet these two demands,an algorithm is proposed in this paper,which has these characteristics:firstly,it adopts the orthogonal design method with quantization technology to generate initial population whose individuals are scattered uniformly over the target search space. So the algorithm can use them sufficiently in the subsequent iterations. What’s more,it is based on an adaptive ε concept to obtain a good distribution along the true Pareto-optimal solutions. Finally,experiments on five benchmark problems with different features have shown that this algorithm does well not only in distribution,but also in convergence when compared to other evolution algorithms.

References:

[1] 安伟刚. 多目标优化方法研究及其工程应用[D]. 西安:西北工业大学航空学院,2005.
[2]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the 1st International Conference on Genetic Algorithms.USA:Pittsburgh,1986(2):93-100.
[3]Srinivas N,Kalyanmoy D. Multi-objective optimization using the nondominated sorting in genetic algorithms[J]. Evolution Computation,1994,2(3):221-248.
[4]Tadahiko M,Hisao I. MOGA:multi-objective genetic algorithms[C]//Proceedings of the 2nd IEEE International Conference on Evolutionary Computing. Perth,Australia:IEEE Press,1995(3):289-294.
[5]Jeffrey H,Nicholas N. Multi-objective optimization using the niched pareto genetic algorithm,technical report 93005[R]. Urbana,Illinois,USA:University of Illinois at Urbana Champaign,1993.
[6]Joshua D K,David W C. The pareto archive evolutionary strategy:a new baseline algorithm for multiobjective optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Washington D C,US:IEEE Press,1999:98-105.
[7]Eckart Z,Lothar T. An evolutionary algorithm for multi-objective optimization:the strength pareto approach,technical report 43[R]. Zurich,Switzerland:Swiss Federal Institute of Echnology. 1998:411-436.
[8]Kalyanmoy D,Samir A,Amrit P,et al. A fast elitist non-dominate sorting genetic algorithm for multi-objective optimization:NSGA-II[J]. Transactions on Evolutionary Computation,2002,6(2):182-197.
[9]Zitzler E,Laumanns M,Thiele L. SPEA2:Improving the strength pareto evolutionary algorithm,technical report TIK-Report 103[R]. Swiss:Swiss Federal Institute of Technology Zurich(ETH),2001.
[10]王宇平,焦永昌,张福顺. 解多目标优化的均匀正交遗传算法[J]. 系统工程学报,2003,13:481-486.
[11]曾三友,魏巍,康立山. 基于正交设计的多目标演化算法[J]. 计算机学报,2005,28(7):1 153-1 162.
[12]关世华,寇纪淞,李敏强. 基于ε-约束方法的Lagrangian多目标协同进化算法[J]. 系统工程与电子技术,2002,24(9):33-37.
[13]Shi C,Li Q Y,Shi Z Z. A quick multi-objective evolutionary algorithm based on domination tree[J]. Journal Software,2007,18(3):505-516.
[14]Gong W,Cai Z,Ling C. ODE:a fast and robust differential evolution based on orthogonal[C]//LNAI 4304:pROC of Advances in Artificial Intelligence. Berlin:Springer,2006:709-718.
[15]公茂果,焦李成,杨咚咚,等. 进化多目标优化算法研究[J]. 软件学报,2009,2(20):271-289.
[16]龚文引,蔡之华. 基于ε占优的正交多目标差分演化算法研究[J]. 计算机研究与发展,2009(4):655-666.
[17]Leung Y,Wang Y. An orthogonal genetic algorithm with quantization for global numerical optimization[J]. IEEE Transaction on Evolutionary Computation,2001,5(1):41-53.
[18]Gong W Y,Cai Z H. An improved multi-objective differential evolution based on Pareto adaptive ε-dominance and orthogonal design[J]. European Journal of Operational Research,2009,198:576-601.
[19]罗辞勇,陈民铀,张聪誉. 采用循环拥挤排序策略的改进NSGA-II算法[J]. 控制与决策,2010,25(2):227-231.
[20]陈民铀,张聪誉,罗辞勇. 自适应进化多目标粒子群算法[J]. 控制与决策,2009,24(12):1 851-1 855.
[21]贺群,程格,安军辉,等. 基于Pareto的多目标克隆进化算法[J]. 计算机科学,2012,39(6A):489-492.
[22]杨尚军,王社伟,陶军,等. 基于混合细菌觅食算法的多目标优化方法[J]. 计算机仿真,2012,29(6):218-222.
[23]RobiDcˇ T,FilipiDcˇ B. DEMO:Differential evolution for multiobjective optimization[C]//LNCS 3410:Proc of EMO’05. Berlin:Springer,2005:520-533.
[24]Deb K,Mohan M,Mishra S. Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions[J]. Evolutionary Computation,2005,13(4):501-525.
[25]Zitzler E,Thiele L,Laumanns M,et al. Performance assessment of multi-objective optimizer:an analysis and review[J]. IEEE Trans on Evolutionary Computation,2003,7(2):117-132.

Memo

Memo:
-
Last Update: 2015-03-30