[1] Dathe M,Wieprecht T. Structural features of helical antimicrobial peptides:their potential to modulate activity on model membranes and biological cells[J]. Biochim Biophys Acta,1999,1 462(1/2):71-87.
[2]Cao L,Dai C,Li Z,et al. Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo[J]. PLoS One,2012,7(7):e40135.
[3]Schweizer F. Cationic amphiphilic peptides with cancer-selective toxicity[J]. Eur J Pharmacol,2009,625(1/2/3):190-194.
[4]Han Y Y,Liu H Y,Han D J,et al. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells[J]. Biochem Pharmacol,2013,86(9):1 254-1 262.
[5]Dennison S R,Harris F,Phoenix D A. The interactions of aurein 1.2 with cancer cell membranes[J]. Biophys Chem,2007,127(1/2):78-83.
[6]Lee H S,Park C B,Kim J M,et al. Mechanism of anticancer activity of buforin IIb,a histone H2A-derived peptide[J]. Cancer Lett,2008,271(1):47-55.
[7]Shai Y. Mechanism of the binding,insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides[J]. Biochim Biophys Acta,1999,1 462(1/2):55-70.
[8]Raghuraman H,Chattopadhyay A. Organization and dynamics of melittin in environments of graded hydration:a fluorescence approach[J]. Langmuir,2003,19:10 332-10 341.
[9]Raghuraman H,Chattopadhyay A. Interaction of melittin with membrane cholesterol:a fluorescence approach[J]. Biophys J,2004,87(4):2 419-2 432.
[10]Heinen T E,da Veiga A B. Arthropod venoms and cancer[J]. Toxicon,2011,57(4):497-511.
[11]Moon D O,Park S Y,Choi Y H,et al. Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells[J]. Toxicon,2008,51(1):112-120.
[12]Park J H,Jeong Y J,Park K K,et al. Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-κB and AP-1-dependent MMP-9 expression[J]. Mol Cells,2010,29(2):209-215.
[13]Liu S,Yu M,He Y,et al. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway[J]. Hepatology,2008,47(6):1 964-1 973.
[14]Dathe M,Wieprecht T. Structural features of helical antimicrobial peptides:their potential to modulate activity on model membranes and biological cells[J]. Biochim Biophys Acta,1999,1 462(1/2):71-87.
[15]Weaver A J,Kemple M D,Brauner J W,et al. Fluorescence,CD,attenuated total reflectance(ATR)FTIR,and 13C NMR characterization of the structure and dynamics of synthetic melittin and melittin analogues in lipid environments[J]. Biochemistry,1992,31(5):1 301-1 313.
[16]Pérez-Payá E,Houghten R A,Blondelle S E. The role of amphipathicity in the folding,self-association and biological activity of multiple subunit small proteins[J]. J Biol Chem,1995,270(3):1 048-1 056.
[17]Asthana N,Yadav S P,Ghosh J K. Dissection of antibacterial and toxic activity of melittin:a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity[J]. J Biol Chem,2004,279(53):55 042-55 050.
[18]Chen Y Q,Min C,Sang M,et al. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells[J]. Peptides,2010,31:1 504-1 510.
[19]Chung J J,Ratnapala L A,Cooke I M,et al. Partial purification and characterization of a hemolysin(CAH1)from Hawaiian box jellyfish(Carybdea alata)venom[J]. Toxicon,2001,39(7):981-990.
[20]Marcotte I,Wegener K L,Lam Y H,et al. Interaction of antimicrobial peptides from Australian amphibians with lipid membranes[J]. Chem Phys Lipids,2003,122(1/2):107-120.
[21]Yeagle P L. Cholesterol and the cell membrane[J]. Biochim Biophys Acta,1985,822(3/4):267-287.
[22]Simons K,Ikonen E. How cells handle cholesterol[J]. Science,2000,290(5 497):1 721-1 726.
[23]Maher S,McClean S. Melittin exhibits necrotic cytotoxicity in gastrointestinal cells which is attenuated by cholesterol[J]. Biochem Pharmacol,2008,75(5):1 104-1 114.
[24]Raghuraman H,Chattopadhyay A. Cholesterol inhibits the lytic activity of melittin in erythrocytes[J]. Chem Phys Lipids,2005,134(2):183-189.
[25]Cassera M B,Silber A M,Gennaro A M. Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface. An electron paramagnetic resonance(EPR)spin label study[J]. Biophys Chem,2002,99(2):117-127.