[1]PARDOUX E,PENG S. Adapted solution of a backward stochastic differential equations[J]. Systems control letters,1990,14:55-61.
[2]ROGERS L C G. Arbitrage with fractional Brownian motion[J]. Math Finance,1997,7:95-105.
[3]CARMONA P,COUTIN L,MONTSENY G. Stochastic integration with respect to fractional Brownian motion[J]. Annales de l’Institut Henri Porncare Probabilities et Statisques,2003,39:27-68.
[4]DUNCAN T E,HU Y,PASIK-DUNCAN B. Stochastic calculus for fractional Brownian motion[J]. SIAM J Control Optim,2000,38:582-612.
[5]MISHURA Y S. Stochastic calculus for fractional Brownian motion and related processes[M]. Berlin Heidelberg:Springer-Verlag,2008.
[6]BIAGINI F,HU Y,IKSENDA B,et al. A stochastic maximal principle for processes driven by fractional Brownian motion[J]. Stoch Process Appl,2002,100:233-253.
[7]HU Y,PENG S. Backward stochastic differential equation driven by fractional Brownian motion[J]. SIAM J Control Optim,2009,48(3):1675-1700.
[8]MATICIUC L,NIE T. Fractional backward stochastic differential equations and fractional backward variational inequalities[J]. J Theoret Probab,2015,28(1):337-395.
[9]BORKOWSKA K J. Generalized bsdes driven by fractional Brownian motion[J]. Statistics and probability letters,2013,83:805-811.
[10]FEI W,XIA D,ZHANG S. Solutions to bsdes driven by both standard and fractional Brownian motions[J]. Acta mathematicae applicatae sinica,2013,29:329-354.
[11]ZHANG H. Properties of solution of fractional backward stochastic differential equation[J]. Applied mathematics and computation,2014,228:446-453.
[12]EL KAROUI N,PENG S,QUENEZ M C. Backward stochastic differential equations in finance[J]. Math Finance,1997,7:1-71.
[13]BRIAND P H,DELYON B,HU Y,et al. Lp solutions of backward stochastic differential equations[J]. Stoch Process Appl,2003,108:109-129.
[14]CHEN S. Lp solutions of one-dimensional backward stochastic differential equations with continuous coefficients[J]. Stoch Anal Appl,2010,28:820-841.
[15]ZHANG Q,ZHAO H. Probabilistic representation of weak solutions of partial differential equations with polynomial growth coefficients[J]. J Theor Probab,2012,25(2):396-423.
[16]HU Y. Integral transformations and anticipative calculus for fractional Brownian motions[J]. Mem Amer Math Soc,2005,175:825.
[17]HU Y,IKSENDAL B. Fractional white noise calculus and applications to finance[J]. Infin Dimens Anal Quantum Probab Relat Top,2003,6:1-32.
[18]MéMIN J,MISHURA Y,VALKEILA E. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion[J]. Statist Probab Lett,2001,51:197-206.