|Table of Contents|

Lp Solutions of Backward Stochastic Differential Equations Driven by Fractional Brownian Motions(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年04期
Page:
14-
Research Field:
数学
Publishing date:

Info

Title:
Lp Solutions of Backward Stochastic Differential Equations Driven by Fractional Brownian Motions
Author(s):
Lin Lin1Li Geng2
1.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)(2.School of Mathematical Sciences,Fudan University,Shanghai 200433,China
Keywords:
backward stochastic differential equationsfractional Brownian motions[Lpp≥2] solutionslocalization method
PACS:
62M05,60H10
DOI:
-
Abstract:
Recently,backward stochastic differential equations driven by fractional Brownian motion play an important role in mathematical finance,partial differential equations and other fields. In our paper,by the localization method and the generalized Ito formula,we consider the [Lpp≥2]solutions of backward stochastic differential equations driven by fractional Brownian motions under reasonable assumptions.

References:

[1]PARDOUX E,PENG S. Adapted solution of a backward stochastic differential equations[J]. Systems control letters,1990,14:55-61.
[2]ROGERS L C G. Arbitrage with fractional Brownian motion[J]. Math Finance,1997,7:95-105.
[3]CARMONA P,COUTIN L,MONTSENY G. Stochastic integration with respect to fractional Brownian motion[J]. Annales de l’Institut Henri Porncare Probabilities et Statisques,2003,39:27-68.
[4]DUNCAN T E,HU Y,PASIK-DUNCAN B. Stochastic calculus for fractional Brownian motion[J]. SIAM J Control Optim,2000,38:582-612.
[5]MISHURA Y S. Stochastic calculus for fractional Brownian motion and related processes[M]. Berlin Heidelberg:Springer-Verlag,2008.
[6]BIAGINI F,HU Y,IKSENDA B,et al. A stochastic maximal principle for processes driven by fractional Brownian motion[J]. Stoch Process Appl,2002,100:233-253.
[7]HU Y,PENG S. Backward stochastic differential equation driven by fractional Brownian motion[J]. SIAM J Control Optim,2009,48(3):1675-1700.
[8]MATICIUC L,NIE T. Fractional backward stochastic differential equations and fractional backward variational inequalities[J]. J Theoret Probab,2015,28(1):337-395.
[9]BORKOWSKA K J. Generalized bsdes driven by fractional Brownian motion[J]. Statistics and probability letters,2013,83:805-811.
[10]FEI W,XIA D,ZHANG S. Solutions to bsdes driven by both standard and fractional Brownian motions[J]. Acta mathematicae applicatae sinica,2013,29:329-354.
[11]ZHANG H. Properties of solution of fractional backward stochastic differential equation[J]. Applied mathematics and computation,2014,228:446-453.
[12]EL KAROUI N,PENG S,QUENEZ M C. Backward stochastic differential equations in finance[J]. Math Finance,1997,7:1-71.
[13]BRIAND P H,DELYON B,HU Y,et al. Lp solutions of backward stochastic differential equations[J]. Stoch Process Appl,2003,108:109-129.
[14]CHEN S. Lp solutions of one-dimensional backward stochastic differential equations with continuous coefficients[J]. Stoch Anal Appl,2010,28:820-841.
[15]ZHANG Q,ZHAO H. Probabilistic representation of weak solutions of partial differential equations with polynomial growth coefficients[J]. J Theor Probab,2012,25(2):396-423.
[16]HU Y. Integral transformations and anticipative calculus for fractional Brownian motions[J]. Mem Amer Math Soc,2005,175:825.
[17]HU Y,IKSENDAL B. Fractional white noise calculus and applications to finance[J]. Infin Dimens Anal Quantum Probab Relat Top,2003,6:1-32.
[18]MéMIN J,MISHURA Y,VALKEILA E. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion[J]. Statist Probab Lett,2001,51:197-206.

Memo

Memo:
-
Last Update: 2015-12-30