|Table of Contents|

On a New Proof of Wittich Theorem ofComplex Difference Equations(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年04期
Page:
22-
Research Field:
数学
Publishing date:

Info

Title:
On a New Proof of Wittich Theorem ofComplex Difference Equations
Author(s):
Xu XinpingZhang Jianjun
School of Mathematics and Information Technology,Jiangsu Second Normal University,Nanjing 210013,China
Keywords:
Wittich theoremdifference equationsgrowth orderMeromorphic functions
PACS:
O174.5
DOI:
-
Abstract:
The main purpose of this paper is to give a new proof of Wittich theorem of complex difference equations,which don’t depend on the result obtained by Laine I and Yang C C[1]in 2007.

References:

[1]CHERRY W,YE Z. Nevanlinna’s theory of value distribution[M]. Berlin:Springer-Verlag,2001.
[2]HAYMAN W K. Meromorphic functions[M]. Oxford:Clarendon Press,1964.
[3]LAINE I. Nevanlinna theory and complex differential equations[M]. Berlin:Walter de Gruyter,1993.
[4]ZHANG J J,LI J. Some results on complex difference and [q]-difference equations[J]. Journal of nanjing normal university(natural science edition),2013,36:30-35.
[5]LAINE I,YANG C C. Clunie theorems for difference and [q]-difference polynomials[J]. J London Math Soc,2007,76:556-566.
[6]ISHIZAKI K. On a conjecture of Gackstatter and Laine for some differential equations[J]. Proc Japan Acad,1991,67:270-273.
[7]CHIANG Y M,FENG S J. On the Nevanlinna characteristic of [f(z+η)] and difference equations in the complex plane[J]. Ramanujan journal,2008,16:105-129.
[8]HALBURD R G,KORHONEN R J. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations[J]. J Math Anal Appl,2006,314:477-487.

Memo

Memo:
-
Last Update: 2015-12-30