|Table of Contents|

Temperature Field Simulation for High Intensity Focused Ultrasound(HIFU)Using Finite Difference Method in Time Domain(FDTD)(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年04期
Page:
106-
Research Field:
物理学
Publishing date:

Info

Title:
Temperature Field Simulation for High Intensity Focused Ultrasound(HIFU)Using Finite Difference Method in Time Domain(FDTD)
Author(s):
He XiangdongFeng Shaotong
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
Keywords:
high intensity focused ultrasound(HIFU)finite difference method in time domain(FDTD)temperature field
PACS:
O426.2
DOI:
-
Abstract:
The properties of acoustic pressure and vibration velocity generated by high intensity focused ultrasound(HIFU) are theoretically studied in the cylindrical coordinate. Based on the Pennes bio-heat conduction equation,the distributions of the temperature field and temperature rising for HIFU are also simulated. By using the finite difference method in time domain(FDTD),the Westervelt nonlinear propagation wave equation is solved and the sound pressure of the focal area is calculated in water. By solving the Pennes equation,the temperature fields at various conditions are simulated,and the shape,size and position of the focal region with the temperature higher than 65 ℃ are obtained. The numerical results demonstrate that the focal region of the HIUF treatment is approximate to a tiny cylinder with the position slightly closer than the geometrical focusing radius. This study provides a theoretical basis for precise positioning and temperature control in the practical application of HIFU.

References:

[1]钱祖文. 高强度聚焦超声(HIUF)——一门多学科的研究课题[J]. 物理,2007,36(9):701-702.
[2]冯若. 高强度聚焦超声(HIUF)无创外科——21世纪治疗肿瘤的新技术[J]. 应用声学,2001,20(2):38-42.
[3]冯若,朱辉,邹建中. 高强度聚焦超声(HIUF)技术迅速发展的五年[J]. 声学技术,2006,25(4):387-391.
[4]熊六林. 高强度聚焦超声的临床应用[J]. 物理,2007,36(9):715-719.
[5]刘红,龚忠兵,候孝林,等. 高强度聚焦超声及其医学应用[J]. 中国医疗器械信息,2003,9(5):8-10.
[6]孙福成,汤建明. 高强度聚焦超声在医学超声领域中的发展与应用[J]. 物理,2007,36(9):708-714.
[7]GAIL R. TER HAAR G R. High intensity focused ultrasound for the treatment of tumors[J]. Echocardiography,2001,4(18):317-322.
[8]熊六林. 高强度聚焦超声(HIUF)治疗肿瘤原理及临床应用现状[J]. 中国医疗器械信息,2009,15(3):17-21.
[9]李发琪,王智彪. 高强度聚焦超声治疗关键技术的思考和完善[J]. 中国医学文摘耳鼻咽喉科学,2006,22(2):91-93.
[10]孙西钊,张志伟. 体外冲击波疗法在骨科的应用[J]. 中华外科杂志,2004,42(23):1 441-1 443.
[11]孙俊霞,寿文涛. 高强度聚焦超声换能器的新型设计[J]. 声学技术,2003,22(2):80-82.
[12]DEFORD J A,BABBS C F,PATEL U H. Droop. a rapidly computable descriptor of local minimum tissue temperature during conductive interstitial hyperbermia[J]. Medical biological engineering computation,1992,30(3):333-342.
[13]PAULSEN K,MOSKOWITZ M,RYAN T,et al. Initial in vivo experience with EIT as a thermal estimator during hyperthermia[J]. International journal of hyperthermia,1996,12(5):573-586.
[14]JACOBSEN S,STAUFFER P. Non-invasive temperature profile estimation in a lossy medium based on multi-band radiometric signals sensed by a microwave dual-purpose body-contacting antenna[J]. International journal of hyperthermia,2002,18(2):86-103.
[15]刘志军. 高强度聚焦超声(HIUF)声场及其温度场的数值模拟[D]. 兰州:兰州交通大学,2009.
[16]王长清,祝西里. 电磁场计算中的时域有限差分法[M]. 北京:北京大学出版社,1993.
[17]NAKAMURA O,MORITA N,OKAZAKI K. Quantitative evaluation of trigger pulse reflected waves in supersonic extracorporeal shock wave lithotripter[J]. Trans IEICE,1995,78(10):1 263-1 275.
[18]PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of applied physiology,1948,1:93-122.
[19]GINTER S. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption[J]. Ultrasonics,2000,37:693-696.

Memo

Memo:
-
Last Update: 2015-12-30