[1] ARMBRUST M,FOX A,GRIFFITH R,et al. A view of cloud computing[J]. Communications of the ACM,2010,53(4):50-58.
[2] ATZORI L,IERA A,MORABITO G. The Internet of things:a survey[J]. Computer networks,2010,54(15):2 787-2 805.
[3] FUNG P T,LIN C,LI Z Z,et al. DragonNet:a robust mobile internet service system for long-distance trains[J]. IEEE transactions on mobile computing,2013,12(11):2 206-2 218.
[4] HAEWOON K,CHANGHYUN L,et al. What is twitter,a social network or a news media?[C]//Proceedings of the 19th International Conference on World Wide Web,Raleigh,2010:591-600.
[5] LABRINIDIS A,JAGADISH H V. Challenges and opportunities with big data[J]. Proc VLDB Endow,2012,5(12):2 032-2?033.
[6] XUE Q ZENG,GUO Z L. Incremental partial least squares analysis of big streaming data[J]. Pattern recognition,2014,47(11):3 726-3 735.
[7] GULISANO V. Streamcloud:an elastic and scalable data streaming system[J]. IEEE transactions on parallel and distributed systems,2012,23(12):2 351-2 365.
[8] LEI C,RUNDENSTELNER E. Robust distributed query processing for streaming data[J]. ACM transactions on database system,2014,39(2):1-45.
[9] TENENBAUM J B,SILVA D V,LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000,290:2 319-2 323.
[10] ROWEIS S T,SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290:2 323-2 326.
[11] BELKIN M,NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,2003,15(6):1 373-1 396.
[12] DONOHO D L,GRIMES C. Hessian eigenmaps:locally linear embedding techniquesfor high-dimensional data[J]. Proceedings of the national academy of sciences,2003,100:5 591-5 596.
[13] ZHANG Z Y,ZHA H Y. Principal manifolds and nonlinear dimensionality reduction viatangent space alignment[J]. SIAM journal of scienti?c computing,2004,26:313-338.
[14] LIU X M,YIN J W,FENG Z L,et al. Incremental manifold learning via tangent space alignment[C]//Artificial Neural Networks in Pattern Recognition,Ulm,Germany,2006:107-121.
[15] JIA P,YIN J,et al. Incremental Laplacianeigenmaps by preserving adjacent information between data points[J]. Pattern recognition letters,2009,30:1 457-1 463.
[16] KOUROPTEVA O,OKUN O,et al. Incremental locally linear embedding[J]. Pattern recognition,2005,38:1 764-1 767.
[17] ABDEL M O,BEN H A,et al. Incremental Hessian locally linear embedding algorithm[C]//The 9th International Symposium on Signal Processing and Its Applications,Sharjah,United Arab Emirates,2007:1-4.
[18] ABDEL M O,BEN H A,et al. Incremental line tangent space alignment algorithm[C]//Canadian Conference on Electrical and Computer Engineering,Vancouver,BC,2007:1 329-1 332.
[19] LAW M H C,JAIN A K. Incremental nonlinear dimensionality reduction by manifold learning[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28:377-391.
[20] LI Y M,XU L Q,MORPHETT J,et al. An integrated algorithm of incremental and robust PCA[C]//International Conference on Image Processing,Barcelona,2003(1):245-248.
[21] LI Y M. On incremental and robust subspace learning[J]. Pattern recognition,2004,37:1 509-1 518.
[22] TAN C,GUAN J H. A new manifold learning algorithm based on incremental spectral decomposition[C]//Advanced Data Mining and Applications,Nanjing,2012.
[23] NING H Z,XU W,et al. Incremental spectral clustering by efficiently updating the eigen-system[J]. Pattern recognition,2010,43:113-127.
[24] GOLUB G H,VAN L C F. Matrix computations[M]. Baltimore:Johns Hopkins University Press,2012.