|Table of Contents|

An Incremental Manifold Learning Algorithm Based onIterative Decomposition(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2016年01期
Page:
14-
Research Field:
数学
Publishing date:

Info

Title:
An Incremental Manifold Learning Algorithm Based onIterative Decomposition
Author(s):
Tan ChaoJi Genlin
School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China
Keywords:
manifold learningiterative decompositionincremental learning
PACS:
TP181
DOI:
-
Abstract:
Manifold learning is used to discover intrinsic low-dimensional manifolds of data points embedded in high-dimensional spaces,which is useful in nonlinear dimension reduction. In recent years,new data points come continually,which will change the existing data points’ neighborhoods and their local distributions. Tranditional methods cannot discover intrinsic information of high dimensional data streams effectively. To solve this problem,we propose an Incremental Manifold Learning Algorithm Based on Iterative Decomposition(IMLID),which can detect the change of manifold and improve the classification accuracy of the feature set sampling in the real world. Experiments on real-life datasets validate the effectiveness of the proposed method which has important significance and extensive application value in pattern recognition and so on.

References:

[1] ARMBRUST M,FOX A,GRIFFITH R,et al. A view of cloud computing[J]. Communications of the ACM,2010,53(4):50-58.
[2] ATZORI L,IERA A,MORABITO G. The Internet of things:a survey[J]. Computer networks,2010,54(15):2 787-2 805.
[3] FUNG P T,LIN C,LI Z Z,et al. DragonNet:a robust mobile internet service system for long-distance trains[J]. IEEE transactions on mobile computing,2013,12(11):2 206-2 218.
[4] HAEWOON K,CHANGHYUN L,et al. What is twitter,a social network or a news media?[C]//Proceedings of the 19th International Conference on World Wide Web,Raleigh,2010:591-600.
[5] LABRINIDIS A,JAGADISH H V. Challenges and opportunities with big data[J]. Proc VLDB Endow,2012,5(12):2 032-2?033.
[6] XUE Q ZENG,GUO Z L. Incremental partial least squares analysis of big streaming data[J]. Pattern recognition,2014,47(11):3 726-3 735.
[7] GULISANO V. Streamcloud:an elastic and scalable data streaming system[J]. IEEE transactions on parallel and distributed systems,2012,23(12):2 351-2 365.
[8] LEI C,RUNDENSTELNER E. Robust distributed query processing for streaming data[J]. ACM transactions on database system,2014,39(2):1-45.
[9] TENENBAUM J B,SILVA D V,LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000,290:2 319-2 323.
[10] ROWEIS S T,SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290:2 323-2 326.
[11] BELKIN M,NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,2003,15(6):1 373-1 396.
[12] DONOHO D L,GRIMES C. Hessian eigenmaps:locally linear embedding techniquesfor high-dimensional data[J]. Proceedings of the national academy of sciences,2003,100:5 591-5 596.
[13] ZHANG Z Y,ZHA H Y. Principal manifolds and nonlinear dimensionality reduction viatangent space alignment[J]. SIAM journal of scienti?c computing,2004,26:313-338.
[14] LIU X M,YIN J W,FENG Z L,et al. Incremental manifold learning via tangent space alignment[C]//Artificial Neural Networks in Pattern Recognition,Ulm,Germany,2006:107-121.
[15] JIA P,YIN J,et al. Incremental Laplacianeigenmaps by preserving adjacent information between data points[J]. Pattern recognition letters,2009,30:1 457-1 463.
[16] KOUROPTEVA O,OKUN O,et al. Incremental locally linear embedding[J]. Pattern recognition,2005,38:1 764-1 767.
[17] ABDEL M O,BEN H A,et al. Incremental Hessian locally linear embedding algorithm[C]//The 9th International Symposium on Signal Processing and Its Applications,Sharjah,United Arab Emirates,2007:1-4.
[18] ABDEL M O,BEN H A,et al. Incremental line tangent space alignment algorithm[C]//Canadian Conference on Electrical and Computer Engineering,Vancouver,BC,2007:1 329-1 332.
[19] LAW M H C,JAIN A K. Incremental nonlinear dimensionality reduction by manifold learning[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28:377-391.
[20] LI Y M,XU L Q,MORPHETT J,et al. An integrated algorithm of incremental and robust PCA[C]//International Conference on Image Processing,Barcelona,2003(1):245-248.
[21] LI Y M. On incremental and robust subspace learning[J]. Pattern recognition,2004,37:1 509-1 518.
[22] TAN C,GUAN J H. A new manifold learning algorithm based on incremental spectral decomposition[C]//Advanced Data Mining and Applications,Nanjing,2012.
[23] NING H Z,XU W,et al. Incremental spectral clustering by efficiently updating the eigen-system[J]. Pattern recognition,2010,43:113-127.
[24] GOLUB G H,VAN L C F. Matrix computations[M]. Baltimore:Johns Hopkins University Press,2012.

Memo

Memo:
-
Last Update: 2016-03-30