|Table of Contents|

On Dirichlet Problem of Tricomi-Type Equationin Rectangular Domains(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2016年01期
Page:
29-
Research Field:
数学
Publishing date:

Info

Title:
On Dirichlet Problem of Tricomi-Type Equationin Rectangular Domains
Author(s):
Zhang KangqunLi Yuchen
Department of Mathematics and Physics,Nanjing Institute of Technology,Nanjing 211167,China
Keywords:
Tricomi-type equationDirichlet problemwell-posednessill-posedness
PACS:
O175.28
DOI:
-
Abstract:
Dirichlet problem of inhomogeneous Tricomi type equation in the rectangular domain Ω={(t1,t0)×(0,π):t1≤0,t0>0} is discussed. For t1=0,we give the solution a priori estimate. For t1<0,we show the Dirichlet problem is ill-posedness in Hadamard’s sense by constructing a counterexample.

References:

[1] KHACEV M M. The Dirichlet problem for the Tricomi equation in a rectangle[J]. Direr Uravn,1975,11:151-160,205.

[2] JANG J,MASMOUDI N. Well-posedness of compressible Euler equations in a physical vacuum[J]. Comm Pure Appl Math,2015,68(1):61-111.
[3] ELEEV V A,ZHEMUKHOVA Z K. On some boundary value problems for a mixed equation with discontinuous coefficients in a rectangular domain[J]. Vladikavkaz Mat Zh,2002,4(4):8-18.
[4] ZHANG K Q. A note on initial value problem for the generalized Tricomi equation in a mixed-type domain[J]. Acta Math Sinica,2013,29(8):1 581-1 596.
[5] KHACHEV M M. The Dirichlet problem for a degenerate hyperbolic equation in a rectangle[J]. Direr Uravn,2001,37(4):570-572,576.
[6] SABITOV K B. The Tricomi problem for a mixed parabolic-hyperbolic equation in a rectangular domain[J]. Mat Zametki,2009,86(2):273-279.
[7] SABITOV K B,SULEMANOVA A K. The Dirichlet problem for an equation of mixed type with characteristic degeneration in a rectangular domain[J]. Izv Vyssh Uchebn Zaved Mat,2009,11:43-52.
[8] PAYNE L E,SATHER D. On some improperly posed problems for the Chaplygin equation[J]. J Math Anal Appl,1967,19:67-77.
[9] MORAWETZ C S. The Dirichlet problem for the Tricomi equation[J]. Comm Pure Appl Math,1970,23(4):587-601.
[10] LUPO D,MORAWETZ C S,PAYNE K R. On closed boundary value problems for equations of mixed elliptic-hyperbolic type[J]. Comm Pure Appl Math,2007,60(9):1 319-1 348.
[11] PAYNE K R. Boundary geometry and location of singularities for solutions to the Dirichlet problem for Tricomi type equations[J]. Houston J Math,1997,23(4):709-731.
[12] ERDELYI A,MAGNUS W,OBERHETTINGER F,et al. Higher transcendental functions[M]. New York,Toronto and London:McGraw-Hill Book Company,1953.[13] WIMP J. On the zeros of a confluent hypergeometric function[J]. Proc Amer Math Soc,1965,16:281-283.
[14] ZHANG K Q. Existence and regularity of solution to the generalized Tricomi equation with a singular initial datum at a point[J]. Acta Math Sinica,2012,28(6):1 135-1 154.

Memo

Memo:
-
Last Update: 2016-03-30