|Table of Contents|

Research Progresses on the Environmental Safety ofTransgenic Bt Plants with Insect-resistant Trait(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2016年03期
Page:
1-
Research Field:
·特约稿·
Publishing date:

Info

Title:
Research Progresses on the Environmental Safety ofTransgenic Bt Plants with Insect-resistant Trait
Author(s):
Liu Biao
Nanjing Institute of Environmental Sciences,Ministry of Environmental Protection,Nanjing 210042,China
Keywords:
insect-resistanttransgenic Bt plantsenvironmental safetyprogresses
PACS:
Q945
DOI:
10.3969/j.issn.1001-4616.2016.03.001特约稿
Abstract:
At present,the commercial planting scale of transgenic Bt plants with insect-resistant trait is the second biggest in the world,being next only to that with herbicide-resistant trait. The research progresses on the environmental safety of transgenic Bt plants are summarized briefly from four aspects,i.e. the effects on non-target organisms,gene flow,resistance development of the target organisms and potential weediness. Suggestions for the future research issues on the environmental safety of transgenic Bt plants are put forwards.

References:

[1] JAMES C. 20th anniversary(1996 to 2015)of the global commercialization of biotech crops and biotech crop highlights in 2015[R]. Ithaca,NY:ISAAA,2015.
[2] 范存会,黄季焜,胡瑞法,等. Bt抗虫棉的种植对农药施用的影响[J]. 中国农村观察,2002,5:2-10.
[3] SNOW A A,PALMA P M. Commercialization of transgenic plants:potential ecological risks[J]. BioScience,1997,47(2):86-96.
[4] WOLFENBARGER L L,PHIFER P R. The ecological risks and benefits of genetically engineered plants[J]. Science,2000,290:2 088-2 093.
[5] LI W D,WU K M,WANG X Q,et al. Impact of POLLEN GRains from Bt transgenic corn on the growth and development of Chinese tussah silkworm,Antheraea pernyi(Lepidoptera:Saturniidae)[J]. Environmental entomology,2005,34(4):922-928.
[6] DAI P L,JIA H R,GENG L L,et al. Bt toxin Cry1Ie causes no negative effects on survival,pollen consumption,or olfactory learning in worker honey bees(Hymenoptera:Apidae)[J]. Journal of economic entomology,2016,in press.
[7] STEIJVEN K,STEFFAN-DEWENTER I,Stephan H. Testing dose-dependent effects of stacked Bt maize pollen on in vitro-reared honey bee larvae[J]. Apidologie,2016,47:216-226.
[8] LIU B,XU C R,YAN F M,et al. The impacts of the pollen of insect-resistant transgenic cotton on honeybees[J]. Biodiversity and conservation,2005,14:3 487-3 496.
[9] LIU B,SHU C,XUE K,et al. The oral toxicity of the transgenic Bt+CpTI cotton pollen to honey bees(Apis mellifera)[J]. Ecotoxicology and environmental safety,2009,72(4):1 163-1 169.
[10] 李进步,方丽平,张亚楠,等. 不同类型品种棉花上棉蚜适生性及种群动态[J]. 昆虫学报,2007,50(10):1 027-1 033.
[11] 赵秋剑,吴 敌,林凤敏,等. 绿盲蝽在不同棉花品种(系)上取食行为的EPG解析及田间验证[J]. 中国农业科学,2011,44(11):2 260-2 268.
[12] LI X G,LIU B,WANG X X,et al. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates[J]. Journal of environmental monitoring,2012,14:1 055-1 063.
[13] LIU B,WANG L,ZENG Q,et al. Assessing effects of transgenic Cry1Ac cotton on the earthworm Eisenia fetida[J]. Soil biology & biochemistry,2009,41:1 841-1 846.
[14] 陈松,黄骏麒,周宝良,等. 转Bt基因抗虫棉棉子安全性评价-鲤鱼慢性毒性试验[J]. 棉花学报,1996,8(5):241-245.
[15] BOHN T,ROVER C M,SEMENCHUK P R. Daphnia magna negatively affected by chronic exposure to purified Cry-toxins[J]. Food and chemical toxicology,2016,91:130-140.
[16] 陈松,黄骏麒,周宝良,等. 转Bt基因抗虫棉棉籽安全性评价-大鼠、鹌鹑毒性试验[J]. 江苏农业学报,1996,12(2):17-22.
[17] LOSEY J E,RAYOR L S,CARTER M E. Transgenic pollen harms monarch larvae[J]. Nature,1999,399:214.
[18] PLEASANTS J M,HELLMICH R L,DIVELY G P,et al. Corn pollen deposition on milkweeds in and near cornfields[J]. Proceedings of the national academy of sciences of the United States of America,2001,98(21):11 919-11 924.
[19] SEARS M K,HELLMICH R L,STANLEY-HORN D E,et al. Impact of Bt corn pollen on monarch butterfly populations:a risk assessment[J]. Proceedings of the national academy of sciences of the United States of America,2001,98(21):11 937-11 942.
[20] BAHAR M H,STANLEY J N,GREGG P C,et al. Comparing the predatory performance of green lacewing on cotton bollworm on conventional and Bt cotton[J]. Journal of applied entomology,2012,136(4):263-270.
[21] HAN Y,CHEN J,WANG H,et al. Prey-mediated effects of transgenic cry2Aa rice on the spider Hylyphantes graminicola,a generalist predator of Nilapavarta lugens[J]. BioControl,2015,60:251-261.
[22] ZHANG G F,WAN F H,LIU W X,et al.Early instar response to plant-delivered Bt-toxin in a herbivore(Spodoptera litura)and a predator(Propylaea japonica)[J]. Crop protection,2006,25:527-533.
[23] GENG J H,SHEN Z R,SONG K,et al. Effect of pollen of regular cotton and transgenic Bt+CpTI cotton on the survival and reproduction of the parasitoid wasp Trichogramma chilonis(Hymenoptera:Trichogrammatidae)in the laboratory[J]. Environmental entomology,2006,35(6):1 661-1 668.
[24] LIU X X,ZHANG Q W,ZHAO J Z,et al. Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid Microplitis mediator in the laboratory[J]. Biological control,2005,35:134-141.
[25] WANG Z X,LI Y H,HE K L,et al. Does Bt maize expressing Cry1Ac protein have adverse effects on the parasitoid Macrocentrus cingulum(Hymenoptera:Braconidae)[J]. Insect science,2016,in press.
[26] LU Y H,WU K M,JIANG Y Y,et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China[J]. Science,2010,328:1 151-1 154.
[27] LU Y H,WU K M,JIANG Y Y,et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services[J]. Nature,2012,487(7 407):362-365.
[28] WU K,LU Y H,FENG H,et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J]. Science,2008,321(5 896):1 676-1 678.
[29] HUTCHISON W D,BURKNESS E C,MITCHELL P D,et al. Areawide suppression of european corn borer with Bt maize reaps savings to non-Bt maize growers[J]. Science,2010,330:222-225.
[30] SLATKIN M. Gene flow in natural populations[J]. Annual review of ecology and systematic,1985,16:393-430.
[31] LU B R,WANG L,WANG Z. Can transgene flow lead to environmental biosafety impacts in rice[J]. Sci Sin Vitae,2016,46:420-431.
[32] QUIST D,CHAPELA I H. Transgenic DNA introgressed into traditional maize landraces in Oaxaca,Mexico[J]. Nature,2001,414(6 863):541-543.
[33] PI?EYRO-NELSON A,VAN HEERWAARDEN J,PERALES H R,et al. Transgenes in Mexican maize:molecular evidence and methodological considerations for GMO detection in landrace populations[J]. Molecular ecology,2009,18(4):750-761.
[34] RONG J,LU B R,SONG Z P,et al. Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields[J]. New phytologist,2007,173:346-353.
[35] RONG J,SONG Z P,SU J,et al. Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing[J]. New phytologist,2005,168:559-566.
[36] XIA H,LU B R,SU J,et al. Normal expression of insect-resistant transgene in progeny of common wild rice crossed with genetically modified rice:its implication in ecological biosafety assessment[J]. Theoretical and applied genetics,2009,119:635-644.
[37] XIA H,ZHANG H B,WANG W,et al. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny:implications for environmental biosafety assessment[J]. Evolutionary applications,2016,in press.
[38] 张宏彬,夏辉,杨箫,等. 种植密度对抗虫转基因杂草稻分离后代适合度的影响[J]. 复旦学报(自然科学版),2013,52:419-427.
[39] 贾婕,张金凤,王斌,等. 植物防范转基因逃逸的分子策略[J]. 农业资源与环境科学,2008,24(4):390-393.
[40] GRESSEL J. Dealing with transgene flow of crop protection traits from crops to their relatives[J]. Pest management science,2015,71(5):658-667.
[41] 张永军,吴孔明,彭于发,等. 转抗虫基因植物生态安全性研究进展[J]. 昆虫知识,2002,5:321-327.
[42] TABASHNIK B E,CARRIERE Y,DENNEHY T J,et al. Insect resistance to transgenic Bt crops:lessons from the laboratory and field[J]. Journal of economic entomology,2003,96(4):1 031-1 038.
[43] TABASHNIK B E,PATIN A L,DENNEHY T J,et al. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm[J]. Proceedings of the national academy of science of the United States of America,2000,97(24):12 980-12 984.
[44] 赵建周,赵奎军,卢美光,等. 华北地区棉铃虫与转Bt杀虫蛋白基因棉花间的互作研究[J]. 中国农业科学,1998, 3(15):1-6.
[45] HUANG F,BUSCHMAN L L,HIGGINS R A,et al. Inheritance of resistance to Bacillus thuringiensis toxin(Dipel ES)in the European corn borer[J]. Science,1999,284:965-967.
[46] GOULD F,ANDERSON A,REYNOLDS A,et al. Selection and genetic analysis of a Heliothis virescens(Lepidoptera:Noctuidae)strain with high levels of resistance to Bacillus thuringiensis toxins[J]. Journal of economic entomology,1995,88:1 545-1 559.
[47] LIANG G M,WU K M,YU H K,et al. Changes of inheritance mode and fitness in Helicoverpa armigera(Hübner)(Lepidoptera:Noctuidae)along with its resistance evolution to Cry1Ac toxin[J]. Journal of invertebrate pathology,2008,97(2):142-149.
[48] RAHARDJA U,WHALON M E. Inheritance of resistance to Bacillus thuringiensis subsp tenebrionis CryⅢA delta-endotoxin in Colorado potato beetle(Coleoptera:Chrysomelidae)[J]. Journal of economic entomology,1995,88:21-26.
[49] CARRIéRE Y,ELLERS-KIRK C,LIU Y B,et al. Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm(Lepidoptera:Gelechiidae)[J]. Journal of economic entomology,2001,94:1 571-1 576.
[50] ZHANG W N,MA L,ZHONG F,et al. Fitness costs of reproductive capacity and ovarian development in a Bt-resistant strain of the cotton bollworm Helicoverpa armigera(Hübner)(Lepidoptera:Noctuidae)[J]. Pest management science,2015,71:870-877.
[51] HACKETT S C,BONSALL M B. Type of fitness cost influences the rate of evolution of resistance to transgenic Bt crops[J]. Journal of applied ecology,2016,in press.
[52] WAN P,HUANG Y X,WU H H,et al. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac[J]. PLoS ONE,2012,7:e29975.
[53] ZHANG H N,YIN W,ZHAO J,et al. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China[J]. PLoS ONE,2011,6:e22874.
[54] DHURUA S,GUJAR G T,Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm,Pectinophora gossypiella(Saunders)(Lepidoptera:Gelechiidae),from India[J]. Pest management science,2011,67:898-903.
[55] FABRICK J A,PONNURAJ J,SINGH A,et al. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in India[J]. PLoS One,2014,9(5):e97900.
[56] STORER N P,KUBISZAK M E,KING J E,et al. Status of resistance to Bt maize in Spodoptera frugiperda:lessons from Puerto Rico[J]. Journal of invertebrate pathology,2012,110:294-300.
[57] Gassmann A J,Petzold-Maxwell J L,Keweshan R S,et al. Field-evolved resistance to Bt maize by western corn rootworm[J]. PLoS ONE,2011,6:e22629.
[58] GASSMANN A J. Field-evolved resistance to Bt maize by western corn rootworm:predictions from the laboratory and effects in the field[J]. Journal of invertebrate pathology,2012,110:287-293.
[59] VAN RENSBURG J B J. First report of field resistance by stem borer,Busseola fusca(Fuller)to Bt-transgenic maize[J]. South african journal of plant and soil,2007,24:147-151.
[60] VAN DEN BERG J,HILBECK A,B?HN T. Pest resistance to Cry1Ab Bt maize:field resistance,contributing factors and lessons from South Africa[J]. Crop protection,2013,54:154-160.
[61] FARIAS J R,ANDOW D A,HORIKOSHI R J,et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda(Lepidoptera:Noctuidae)in Brazil[J]. Crop protection,2014,64:150-158.
[62] SANTOS-AMAYA O F,CLEBSON S T,HUGO M M,et al. Genetic basis of Cry1F resistance in two Brazilian populations of fall armyworm,Spodoptera frugiperda[J]. Crop protection,2016,81:154-162.
[63] TABASHNIK B E,BRéVAULT T,CARRIèRE Y. Insect resistance to Bt crops:lessons from the first billion acres[J]. Nature biotechnology,2013,31(6):510-521.
[64] HERRERO S,YOLANDA B,PATRICIA H M,et al. Susceptibility,mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp[J]. Current opinion in insect science,2016,15:89-96.
[65] HAN L Z,JIANG X F,PENG Y F. Potential resistance management for the sustainable use of insect-resistant genetically modified corn and rice in China[J]. Current opinion in insect science,2016,in press.
[66] GOULD F. Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology[J]. Annual review of entomology,1998,43(1):701-726.
[67] CASTANERA P,FARINóS GP,ORTEGO F,et al. Sixteen years of Bt maize in the EU hotspot:why has resistance not evolved?[J]. PLoS ONE,2016,11(5):e0154200.
[68] GOULD F. Testing Bt refuge strategies in the field[J]. Nature biotechnology,2000,18(3):266-267.
[69] GAO Y,WU K,GOULD F. Frequency of Bt resistance alleles in H. annigera during 2006-2008 in Northern China[J]. Environmental entomology,2009,38(4):1 336-1 3 42.
[70] WU K,GUO Y. The evolution of cotton pest management practices in China[J]. Annual review of entomology,2005,50:31-52.
[71] WU K. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China[J]. Journal of invertebrate pathology,2007,95(3):220-223.
[72] WU K,GUO Y,GAO S. Evaluation of the natural refuge function for Helicoverpa armigera(Lepidoptera:Noctuidae)within Bacillus thuringiensis transgenic cotton growing areas in north China[J]. Journal of economic entomology,2002,95(4):832-837.
[73] Zhao J Z,Cao J,Li Y,et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution[J]. Nature biotechnology,2003,21(12):1 493-1 497.
[74] CARRIèRE Y,FABRICK J A,TABASHNIK B E. Can pyramids and seed mixtures delay resistance to Bt crops?[J]. Trends in biotechnology,2016,34(4):291-302.
[75] 刘晨曦,李云河,高玉林,等. 棉铃虫对转Bt基因抗虫棉花的抗性机制及治理[J]. 中国科学(生命科学),2010,40(10):920-928.
[76] CHEN L Y,SNOW A A,WANG F,et al. Effects of insect-resistance transgenes on fecundity in rice(Oryza sativa,Poaceae):a test for underlying costs[J]. American journal of botany,2006,93(1):94-101.
[77] LIU Y,GE F,LIANG Y,et al. Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice[J]. BMC biotechnology,2015,15(27):1-12.
[78] WANG Y,ZHANG G,DU J,et al. Influence of transgenic hybrid rice expressing a fused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield[J]. Crop protection,2010,29(2):128-133.
[79] KIM S,KIM C,LI W,et al. Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer[J]. Euphytica,2008,164(3):829-839.
[80] XIA H,CHEN L,WANG F,et al. Yield benefit and underlying cost of insect-resistance transgenic rice:implication in breeding and deploying transgenic crops[J]. Field crops research,2010,118(3):215-220.
[81] Yang X,Wang F,Su J,et al. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes(Bt/CpTI)in transgenic rice field[J]. PLoS One,2012,7:e41220.
[82] 刘标,韩娟,薛堃. 转基因植物环境监测进展[J]. 生态学报,2016,9:2 490-2 496.
[83] XU L N,WANG Z Y,ZHANG J,et al. Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins[J]. Journal of applied entomoloy,2010,134(5):429-438.
[84] GREENE S L,KESOJU S R,MARTIN R C,et al. Occurrence of transgenic feral alfalfa(Medicago sativa subsp. sativa L.)in alfalfa seed production areas in the United States[J]. PLoS One,2015,10(12):e0143296.

Memo

Memo:
-
Last Update: 2016-09-30