|Table of Contents|

Dynamics Analysis of a Stochastic SIS Epidemic Modelwith Nonlinear Incidence and Birth Pulses(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2016年03期
Page:
10-
Research Field:
·特约稿·
Publishing date:

Info

Title:
Dynamics Analysis of a Stochastic SIS Epidemic Modelwith Nonlinear Incidence and Birth Pulses
Author(s):
Jiang Guirong1Yang Kun2Lin Jiao3
(1.College of Electronic Information and Automation,Guilin University of Aerospace Technology,Guilin 541004,China)(2.Sanmenxia Foreign Language High School,Sanmenxia,472000,China)(3.School of Mathematics and Statics,Baise University,Baise 533000,China)
Keywords:
stochastic SIS epidemic modelnonlinear incidencebirth pulsesLyapunov function
PACS:
O175.1
DOI:
10.3969/j.issn.1001-4616.2016.03.002
Abstract:
A stochastic SIS epidemic model with nonlinear incidence and birth pulses is investigated in this paper. The existence and uniqueness of the global positive solution are proved by establishing Lyapunov function. The sufficient condition for stochastic extinction of the infection is gained. The sufficient condition for the stochastically exponentially asymptotically stability of infection-free solution is gained by using the Lyapunov exponents.

References:

[1] MAO X. Stochastic differential equation:theory and applications[M]. New York:Wiley,1972.
[2] 王克. 随机生物数学模型[M]. 北京:科学出版社,2010.
[3] GRAY A,GREENHALGH D,MAO X,et al. The SIS epidemic model with Markovian switching[J]. Journal of mathematical analysis and applications,2012,394(1):496-516.
[4] 陈兰荪. 非线性生物动力系统[M]. 北京:科学出版社,1993.
[5] JIAO J,CHEN L. A pest management SI model with impulsive control concerned[J]. 生物数学学报,2007,22(3):385-394.
[6] 甘文珍,史一欢. 一类具扩散的SIRS传染病模型解的渐近性质[J]. 南京师大学报(自然科学版),2009,32(3):25-30.
[7] 周艳丽,张卫国. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J]. 山东大学学报(理学报),2013,48(10):68-77.
[8] 王伟华. 具有状态转换和时滞的随机生态模型的研究[D]. 南昌:南昌大学,2013:1-38.
[9] LIU J. Analysis of an epidemic model with density-dependent birth rate,birth pulses[J]. Communication in nonlinear science and numerical simulation,2010,15(1):3 568-3 576.
[10] LI Y. On the almost surely asymptotic bounds of a class of Ornstein-Uhlenbeck Processes in infinite dimensions[J]. Journal of systems science & complexity,2008,21(1):416-426.

Memo

Memo:
-
Last Update: 2016-09-30