[1] MAO X. Stochastic differential equation:theory and applications[M]. New York:Wiley,1972.
[2] 王克. 随机生物数学模型[M]. 北京:科学出版社,2010.
[3] GRAY A,GREENHALGH D,MAO X,et al. The SIS epidemic model with Markovian switching[J]. Journal of mathematical analysis and applications,2012,394(1):496-516.
[4] 陈兰荪. 非线性生物动力系统[M]. 北京:科学出版社,1993.
[5] JIAO J,CHEN L. A pest management SI model with impulsive control concerned[J]. 生物数学学报,2007,22(3):385-394.
[6] 甘文珍,史一欢. 一类具扩散的SIRS传染病模型解的渐近性质[J]. 南京师大学报(自然科学版),2009,32(3):25-30.
[7] 周艳丽,张卫国. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J]. 山东大学学报(理学报),2013,48(10):68-77.
[8] 王伟华. 具有状态转换和时滞的随机生态模型的研究[D]. 南昌:南昌大学,2013:1-38.
[9] LIU J. Analysis of an epidemic model with density-dependent birth rate,birth pulses[J]. Communication in nonlinear science and numerical simulation,2010,15(1):3 568-3 576.
[10] LI Y. On the almost surely asymptotic bounds of a class of Ornstein-Uhlenbeck Processes in infinite dimensions[J]. Journal of systems science & complexity,2008,21(1):416-426.