[1] AMBROSIO L,PRATELLI A. Existence and stability results in the L1 theory of optimal transportation[M]//Optimal transportation and applications. Berlin Heidelberg:Springer,2003:123-160.
[2] 陈平. 次黎曼流形上的极值分解[J]. 安徽师范大学学报(自然科学版),2015,38(6):533-536.
[3] VILLANI C. Optimal transportation,old and new[M]. Berlin Heidelberg:Springer,2008.
[4] SANTAMBROGIO F. Optimal transport for applied mathematicians[M]. Birkauser,NY:Springer,2015.
[5] 陈平. 几个最优映射存在唯一性定理的统一证明[J]. 南京师大学报(自然科学版),2015,38(4):82-85.
[6] CHEN P,JIANG F D,YANG X P. Two dimensional optimal transportation problem for a distance cost with a convex constraint[J]. ESAIM:Control,Optimisation and Calculus of Variations,2013,19(4):1 064-1 075.
[7] CHEN P,JIANG F D,Yang X P. Optimal transportation in Rn for a distance cost with a convex constraint[J]. Zeitschrift füer angewandte mathematik und physik,2015,66(3):587-606.
[8] SANTAMBROGIO F. Absolute continuity and summability of optimal transfort densities:simpler proofs and new estimates[J]. Calculus of variations and partial differential equations,2009,36(3):343-354.
[9] 张恭庆,郭懋正. 泛函分析讲义(上册)[M]. 北京:北京大学出版社,1990.
[10] FELDMAN M,MCCANN R J. Uniqueness and transport density in Monge’s mass transportation problem[J]. Calculus of variations,2002,15:81-113.
[11] CHAMPION T,DE PASCALE L. The monge problem in Rd[J]. Duke mathematical journal,2011,157(3):551-572.