|Table of Contents|

Successive Approximation to Solutions of G-Stochastic DifferentialEquations with Local Non-lipschitz Conditions(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2016年03期
Page:
26-
Research Field:
·特约稿·
Publishing date:

Info

Title:
Successive Approximation to Solutions of G-Stochastic DifferentialEquations with Local Non-lipschitz Conditions
Author(s):
Wang Bingjun12Yuan Mingxia3Zhang Hui2
(1.School of Mathematical Science,Nanjing Normal University,Nanjing 210046,China)(2.Department of Public Basic Courses,Jinling Institute of Technology,Nanjing 211169,China)(3.Jinling College,Nanjing University,Nanjing 210089,China)
Keywords:
local non-lipschitzdifferential equationG-Brownian motion
PACS:
O175.29;O211.6
DOI:
10.3969/j.issn.1001-4616.2016.03.005
Abstract:
This paper consider a class of stochastic differential equations driven by G-Brownian motion with local non-lipschitz conditions. The existence and uniqueness of the local solutions are gain.

References:

[1] PENG S. Filtration consistent nonlinear expectations and evaluations of contingent claims[J]. Acta Math Appl Sin Engl Ser,2004,20(2):1-24.
[2] PENG S. Nonlinear expectations and nonlinear Markov chains[J]. Chinese Ann Math,2005,26B(2):159-184.
[3] PENG S. Survey on normal distributions,central limit theorem,Brownian motion and the related stochastic calculus under sublinear expectations[J]. Sci China Ser A,2009,52(7):1 391-1 411.
[4] PENG S. Nonlinear expectations and stochastic calculus under uncertainty[EB/OL]. 2010. Arxiv:1002.4546v1.
[5] PENG S. Backward stochastic differential equation,nonlinear expectation and their applications[C]//Proceedings of the International Congress of Mathematicians Hyderabad,India,2010.
[6] GAO F. Pathwise properties and homomorphic folws for stochastic differential equations driven by G-Brownian motion[J]. Stochastic process Appl,2009,119:3 356-3 382.
[7] REN Y,HU L. A note on the stochastic differential equations driven by G-Brownian motion[J]. Statistics and probability letters,2011,81:580-585.
[8] DENIS L,HU M,PENG S. Function spaces and capacity related to a sublinear expectation:application to G-Brownian motion paths[J]. Potential Anal,2011,34(2):139-161.
[9] LI X,PENG S. Stopping times and related Ito calculus with G-Brownian motion[J]. Stochastic process Appl,2009,121:1 492-1 508.
[10] LIN Y. Stochastic differential equations driven by G-Brownian motion with reflecting boundary[J]. Electron J Porbab, 2013,18(9):1-23.
[11] WALTER W. Ordinary Differential Equations[M]. New York:Springer-Verlag,2003.

Memo

Memo:
-
Last Update: 2016-09-30