|Table of Contents|

Capacitive Type Magnetoimpedance Effect of PbZr0.48Ti0.52O3/Tb0.3Dy0.7Fe1.92 in Magnetoelectric Composite Vibrator(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2016年03期
Page:
40-
Research Field:
·物理学·
Publishing date:

Info

Title:
Capacitive Type Magnetoimpedance Effect of PbZr0.48Ti0.52O3/Tb0.3Dy0.7Fe1.92 in Magnetoelectric Composite Vibrator
Author(s):
Wang Zhifeng1He Wenqiang1Wang Wei12
(1.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China)(2.Laboratory of Modern Acoustics of MOE,Nanjing University,Nanjing 210093,China)
Keywords:
magnetoelectric composite vibratorcapacitive type
PACS:
O441.6;O482.52+6
DOI:
10.3969/j.issn.1001-4616.2016.03.007
Abstract:
Resonance frequency and impedance matching are important parameters in piezoelectric transducer. In this paper,a magnetoelectric(ME)composite vibrator made of PbZr0.48Ti0.52O3/Tb0.3Dy0.7Fe1.92 double ring were developed. It was found that the variation of relatively effective permittivity of the ME composite resonator with a dc magnetic field is responsible for capacitive type magnetoimpedance effect. About 18% and 32% of magnetoimpedance have been achieved at resonance and anti-resonance frequencies of the ME resonator,respectively. In addition,the resonant frequency of ME composite vibrator shift with increasing dc magnetic field. The resonance and anti-resonance frequencies offset were about 9 kHz when?the?magnetic?field intensity was 800 mT. Based on the magnetic-force-electricity coupling effect,we theoretically analyzed the capacitive type magnetoimpedance effect and magnetically tuned mechanical resonances in the ME composite resonator. The study provides experimental and theoretical basis for solving the problem of resonance frequency shift and impedance mismatch in piezoelectric transducer.

References:

[1] 贾宝贤,边文凤,赵万生,等. 压电超声换能器的应用与发展[J]. 压电与声光,2005,27(2):131-135.
[2] 陈胜,雷向红. 超声电机的阻抗角特性及其控制技术研究[J]. 现代制造,2013(15):94-95.
[3] 赵学慧,林书玉,付志强,等. 径向极化压电陶瓷圆管的耦合振动研究[C]//2011西安-上海市声学学会第二届声学学术会议,西安,2011.
[4] 李平,黄娴,文玉梅. 偏置电压对磁致伸缩/压电层合换能结构磁电性能影响[J]. 物理学报,2012,61(13):137 504-137 505.
[5] RAMOS F A,GALLEGO J J A,MONTOYA V F. Automatic system for dynamic control of resonance in high power and high Q ultrasonic transducers[J]. Ultrasonics,1987,23(4):151-156.
[6] ABDELKEFI A,NAYFEH A H,HAJJ M R. Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters[J]. Nonlinear dynamics,2012,67(2):1 147-1 160.
[7] DAYA E M,AZRAR L,POTIER-FERRY M. An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams[J]. Journal of sound & vibration,2004,271(3/4/5):789-813.
[8] KUANG Y,JIN Y,COCHRAN S,et al. Resonance tracking and vibration stablilization for high power ultrasonic transducers[J]. Ultrasonics,2013,54(1):187-194.
[9] 翁洁知,惠晶. 动态匹配超声波换能器谐振电感的方法与实现[J]. 电力电子技术,2007,41(12):96-97.
[10] 武剑,董惠娟,张广玉. 压电换能器锁相环频率跟踪的失效分析与解决[J]. 华南理工大学学报(自然科学版),2010,38(3):123-128.
[11] SRINIVASAN G,VREUGD C P D,LALETIN V M,et al. Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate:the influence of bias magnetic field[J]. Physical review B,2005,71(18): 184 423-1-184 423-6.
[12] ISRAEL C,PETROV V M,SRINIVASAN G,et al. Magnetically tuned mechanical resonances in magnetoelectric multilayer capacitors[J]. Applied physics letters,2009,95(7):072505-1-072505-3.
[13] YAO Y P,HOU Y,DONG S N,et al. Giant magnetodielectric effect in Terfenol-D/PZT magnetoelectric laminate composite[J]. Journal of applied physics,2011,110(1):014508-1-014508-4.
[14] CASTEL V,BROSSEAU C,YOUSSEF J B. Magnetoelectric effect in BaTiO3/Ni particulate nanocomposites at microwave frequencies[J]. Journal of applied physics,2009,106(6):064312-1-064312-15.
[15] BROSSEAU C,CASTEL V,POTEL M. Controlled extrinsic magnetoelectric coupling in BaTiO3/Ni nanocomposites:effect of compaction pressure on interfacial anisotropy[J]. Journal of applied physics,2010,108(2):024306-1-024306-8.
[16] CASTEL V,BROSSEAU C. Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal oxides[J]. Physical review B:condensed matter,2008,77(13):134 424-1-134 424-9.
[17] PANINA L V,MOHRI K. Magneto-impedance effect in amorphous wires[J]. Applied physics letters,1994,65(9):1 189-1 191.
[18] WANG W,WU J,LUO X,et al. Jump effect based magnetically tunable resonance of PZT-ring/TDF-strip composite with improved sensitivity[J]. Sensors & actuators:physical,2015,225:47-52.
[19] 王衿奉,苏文斌,王春明,等. 压电振动理论与应用[M]. 北京:科学出版社,2011:33-35.
[20] SALAHUN E,QUEFFELEC P,TANNE G,et al. Correlation between magnetic properties of layered ferromagnetic/dielectric material and tunable microwave device applications[J]. Journal of applied physics,2002,91(8):5 449-5 455.
[21] BIAN L X,WEN Y M,LI P.磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析[J]. 物理学报,2009,58(6):4 205- 4 213.
[22] ACHER O,GOURRIEREC P L,PERRIN G,et al. Demonstration of anisotropic composites with tuneable microwave permeability manufactured from ferromagnetic thin films[J]. IEEE transactions on microwave theory & techniques,1996,44(5):674-684.
[23] SUO Z. Stress and strain in ferroelectrics[J]. Current opinion in solid state & materials science,1998,3(5):486-489.
[24] JIA Y,ZHENG C,WU Z,et al. Enhanced magneto-impedance in Fe73.5Cu1Nb3Si13.5B9 ribbons from laminating with magnetostrictive terfenol-D alloy plate[J]. Applied physics letters,2012,101(25):251 914-1-251 914-4.
[25] USOV N A,GUDOSHNIKOV S A. Giant magneto-impedance effect in amorphous ferromagnetic wire with a weak helical anisotropy:theory and experiment[J]. Journal of applied physics,2013,113(24):243 902-1-243 902-10.
[26] FANG X,ZHANG N,WANG Z L. Converse magnetoelectric effects on heterotype electrostrain-piezopermeability composites[J]. Applied physics letters,2008,93(10):102 503-1-102 503-3.
[27] WU G,NAN T,ZHANG R,et al. Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance[J]. Applied physics letters,2013,103(18):182 905-1-182 905-5.

Memo

Memo:
-
Last Update: 2016-09-30