|Table of Contents|

Electronic Energy Properties of the Fibonacci Quantum Wells Structure(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2016年03期
Page:
57-
Research Field:
·物理学·
Publishing date:

Info

Title:
Electronic Energy Properties of the Fibonacci Quantum Wells Structure
Author(s):
Luo MinCheng ZihengBao Jianyang
College of Science,Physics Teaching Lab,Nanjing Forestry University,Nanjing 210037,China
Keywords:
the Fibonacci quantum wells structureelectronic levelSchr?dinger equation
PACS:
O413.1
DOI:
10.3969/j.issn.1001-4616.2016.03.010
Abstract:
The electronic energy expression [S22(E)] for one-dimensional Fibonacci quantum wells structure has been derived. For a selected range of parameters of semiconductor materials,the characteristics of the electronic level versus the well width have been calculated in numerical methods,and the influence of temperature and the height of the barrier on the curves of [S22(E)]-electronic energy has also been analyzed.

References:

[1] ESAKI L,TSU R. Superlattice and negative differential conductivity in semiconductors[J]. IBM J Res Dev,1970,14(1):61-65.
[2] 黄和鸾. 半导体超晶格-材料与应用[M]. 沈阳:辽宁大学出版社,1992.
[3] AZIZ Z,BENTATA S,DJELTI R,et al. Suppression of the singularly localized states in dimer quasiperiodic Fibonacci superlattices[J]. Solid state communications,2010,150:865-869.
[4] DJELTI R,AZIZ Z,BENTATA S,et al. Resonant tunneling in GaAs/AlGa1As superlattices with aperiodic potential profiles[J]. Superlattices Microstruct,2011,50:659-666.
[5] MARTíNEZ-GUTIéRREZ D,VELASCO V R. Transverse acoustic waves in piezoelectric ZnO/MgO and GaN/AlN Fibonacci-periodic superlattices[J]. Surface science,2014,624:58-69.
[6] 骆敏,杨双波. 外场中多势垒结构的共振传输[J]. 南京师大学报(自然科学版),2012,35(4):34-40.
[7] MEGHOUFEL F Z,BENTATA S,TERKHI S,et al. Electronic transmission in non-linear potential profile of GaAs/AlGaAs based quantum well structure[J].Superlattices Microstruct,2013,57:115-122.
[8] EMINE O,YASIN O. Linear and nonlinear intersubband optical absorption coefficient and refractive index change in n-type δ-doped GaAs structure[J]. Opt Commun,2013,294:361-367.
[9] NGUYEN Q B,NGUYEN V H. The quantum acoustoelectric current in a doped superlattice GaAs:Si/GaAs:Be[J]. Superlattices Microstruct,2013,63:121-130.
[10] SATTARI F,FAIZABADI E. Spin transport and wavevector-dependent spin filtering through magnetic graphene superlattice[J]. Solid State Commun,2014,179:48-53.
[11] MERLIN R,BAJEMA K,CLARKE R,et al. Quasiperiodic GaAs-AIAs heterostructures[J]. Phys Rev Lett,1985,55(17):1?768-1 770.
[12] VASCONCELOS M S,MAURIZ P W,ALBUQUERQUE E L. Impurity binding energies in semiconductor Fibonacci superlattices[J]. Microelectronics journal,2003,34:503-505.
[13] VASCONCELOS M S,MAURIZ P W,ALBUQUERQUE E L,et al. Electronic spectra of GaAs/GaAlAs superlattice with impurities arranged according to a Fibonacci sequence[J]. Applied surface science,2004,234:33-37.
[14] ZHANG L W,FANG K,DU G Q,et al. Transmission properties of Fibonacci quasi-periodic one-dimensional photonic crystals containing indefinite metamaterials[J]. Optics communications,2011,284:703-706.
[15] VELASCO V R. Electronic properties of Fibonacci quasi-periodic heterostructures[J]. Phys Stat Sol(b),2002,232(1):71-75.
[16] VELASCO V R. Electronic properties of Fibonacci quasi-periodic heterostructures[J]. Microelectronics journal,2002,33:361-364.
[17] YAMINA S,ZOUBIR A,REDOUAN D,et al. Achievement of tailored laser frequencies by fine-tuning the structural parameters of Fibonacci’s in AlGaAs/GaAs superlattices[J]. Superlattices Microstruct,2013,62:233-241.
[18] ZHANG G G,YANG X B,LI Y H,et al. Optical transmission through multi-component generalized Thue-Morse superlattices[J]. Physica B,2010,405:3 605-3 610.
[19] LI F,YANG X B. Transmission of light through GF(m,n)multilayers[J]. Physica B,2005,368:64-69.
[20] BJ?RN J,SVERRE T E. Solving the Schr?dinger equation inarbitrary quantum-well potential profiles using the transfer matrix method[J]. IEEE J Quantum Electron,1990,26(11):2 025-2 035.
[21] ROBERT G. Elementary quantum mechanics in one dimension[M]. Baltimore:The Johns Hopkins University Press,2004.
[22] 骆敏,杨双波. 多势垒结构共振透射系数的计算[J]. 南京师大学报(自然科学版),2012,35(2):50-55.
[23] BASTARD G. Superlattice band structure in the envelope-function approximation[J]. Phys Rev B,1981,24(10):5 693-5 697.

Memo

Memo:
-
Last Update: 2016-09-30