|Table of Contents|

Research on Parking Berth Characteristics PredictionBased on Time Series Model(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2017年02期
Page:
24-
Research Field:
·数学·
Publishing date:

Info

Title:
Research on Parking Berth Characteristics PredictionBased on Time Series Model
Author(s):
Zhang Lei
College of Mathematics and Statistics,Chongqing Jiaotong University,Chongqing 400074,China
Keywords:
time seriesehicle performance predictionberth utilization
PACS:
U121
DOI:
10.3969/j.issn.1001-4616.2017.02.005
Abstract:
In this paper,based on the data of vehicle parking in and out of an administrative service center,the characteristics of traditional parking demand forecasting methods are discussed. On this basis,the paper introduces the time series model which is used in economics,and makes clear the key steps and methods of building the model. The model is tested and predicted on the Eviews 9.0 platform. Finally,the simulation experiments are carried out to verify the validity of the model.

References:

[1] 屈昌辉. 当前我国城市住宅小区车辆停放存在的问题及管理对策[J]. 城市发展研究,2015(3):23-26.
[2]冯淑媛,李阳生. 智能停车管理系统建设方案和发展对策[J]. 中国建设信息化,2016(10):54-57.
[3]孙吉瑞. 城市混合用地停车需求预测模型研究与实践[J]. 交通与运输(学术版),2016(1):62-66.
[4]单博文. 基于道路服务水平的停车需求预测[J]. 武汉理工大学学报,2012,36(3):541-544.
[5]温旭丽,孙垚飞,罗婷. 基于交通特征的停车需求预测模型构建研究[J]. 公路交通科技,2014(4):297-299.
[6]周岩,董瑞娟,杨伟. 现代化居住社区停车特性与需求分析[J]. 交通科技与经济,2014(2):4-8,12.
[7]王娜. 时间序列建模、预报的原理[J]. 吉林工程技术师范学院学报,2012,28(3):78-80.
[8]林慧君,徐荣聪. 组合ARMA与SVR模型的时间序列预测[J]. 计算机与现代化,2009(8):19-22.
[9]吕树龙. ARIMA模型在降水量预测中的应用[J]. 水科学与工程技术,2012(2):6-8.

Memo

Memo:
-
Last Update: 2017-06-30