|Table of Contents|

Attribute Reduction Algorithms Based on Dominance-Equivalence Relations(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2017年03期
Page:
45-
Research Field:
·计算机科学·
Publishing date:

Info

Title:
Attribute Reduction Algorithms Based on Dominance-Equivalence Relations
Author(s):
Wu Tingting1Li Yan1Guo Nana1He Qiang2
(1.College of Mathematics and Information Science,Hebei University,Key Lab. of Machine Learning and Computational Intelligence,Baoding 071002,China)(2.College of Science,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
Keywords:
rough setdominance-equivalence relationattributes reductiondiscernibility matrixsample pair
PACS:
TP311
DOI:
10.3969/j.issn.1001-4616.2017.03.007
Abstract:
Considering multiple criteria classification problems,dominance relations and equivalence relations can be respectively introduced to condition attributes and decision attributes to describe different types of data. Based on the dominance-equivalence relations,a novel attribute reduction method based on sample pair selection is developed to deal with this kind of information systems. Instead of calculating the whole discernibility matrix,the proposed method only store the useful attributes for attribute reduction by selecting the discerned sample pairs,and therefore it can significantly improve the time costin attribute reduction. In addition,we propose an approximate reduction algorithm in order to deal with comparative large-scale information systems. This algorithm add attributes based on attribute importance and it’s time saving. Finally,the experimental results on UCI data sets demonstrate the feasibility and effectiveness of the proposed algorithms.

References:

[1] PAWLAK Z. Rough sets[J]. International journal of information and computer sciences,1982,11(3):341-356.
[2]PAWLAK Z. Rough sets:theoretical aspects of reasoning about data[M]. Boston:Kluwer Academic Publishers,1991.
[3]苗夺谦,李道国. 粗糙集理论、算法与应用[M]. 北京:清华大学出版社,2008.
[4]ZHANG Q,XIE Q,WANG G. A survey on rough set theory and its applications[J]. CAAI transactions on intelligence technology,2016,1(4):323-333.
[5]YAO J T,LINGRAS P,WU W Z,et al. Rough sets and knowledge technology[C]//Proceeding of the 2nd Canadian. Toronto:Rough Sets Technology,2007.
[6]CHENG Q,QI Z,ZHANG G,et al. Robust modeling and prediction of thermally induced positional error based on grey rough set theory and neural networks[J]. The international journal of advanced manufacturing technology,2016,83(5):1-12.
[7]PéREZ D N,RUANO O D,FDEZ R F,et al. Boosting accuracy of classical machine learning antispam classifiers in real scenarios by applying rough set theory[J]. Scientific programming,2016,2016(3/4):1-10.
[8]PENG L,NIU R,HUANG B,et al. Landslide susceptibility mapping based on rough set theory and support vector machines:a case of the three gorges area,China[J]. Geomorphology,2014,204(1):287-301.
[9]王珏,苗夺谦,周育健. 关于Rough Set 理论与应用的综述[J]. 模式识别与人工智能,1996,9(4):337-344.
[10]张文修,梁怡,吴伟志. 信息系统与知识发现[M]. 北京:科学出版社,2003.
[11]张文修,米据生,吴伟志. 不协调目标信息系统的知识约简[J]. 计算机学报,2003,26(1):12-18.
[12]KRYSZKIEWICZ M. Comparative studies of alternative of knowledge reduction in inconsistent systems[J]. Intelligent systems,2001,16(1):105-120.
[13]GRECOS,MATARAZZO B,SLOWINSKI R. Rough approximation of preference relation by dominance relations[J]. European journal of operational research,1999,117(1):63-83.
[14]徐伟华,张文修. 基于优势关系下不协调目标信息系统的知识约简[J]. 计算机科学,2006,33(2):182-184.
[15]王国胤. Rough集理论与知识获取[M]. 西安:西安交通大学出版社,2001.
[16]STEFANOWSKI J. Handling continuous attributes in discovery of strong decision rules[M]. Berlin:Springer Berlin Heidelberg,1998.
[17]SAI Y,YAO Y Y,ZHANG N. Data analysis and mining in order information table[C]//IEEE International Conference on Data Mining. USA:IEEE Computer Society Press,2001:497-504.
[18]SHAO M W,ZHANG W X. Dominance relation and rules in an incomplete ordered information system[J]. International journal of intelligent systems,2005,20:13-27.
[19]张文修,姚一豫,梁怡. 粗糙集与概念格[M]. 西安:西安交通大学出版社,2006.
[20]苟光磊,王国胤. 基于不协调置信优势原理关系的知识约简[J]. 计算机科学,2016,43(6):204-207.
[21]黄琴,魏玲. 基于布尔矩阵的序信息系统属性约简方法[J]. 小型微型计算机系统,2016,37(8):1 717-1 720.
[22]贺明利,魏玲. 基于优势关系的序形式背景约简[J]. 计算机科学,2015,42(6):46-49.
[23]CHEN D G,ZHAO S Y,ZHANG L,et al. Sample pair selection for attribute reduction with rough set[J]. IEEE Trans Know Data Eng,2012,24(1):2 080-2 093.

Memo

Memo:
-
Last Update: 2017-09-30