|Table of Contents|

Research on Global Path Planning of Mobile Robotin Dynamic Obstacle Environment(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2017年03期
Page:
52-
Research Field:
·计算机科学·
Publishing date:

Info

Title:
Research on Global Path Planning of Mobile Robotin Dynamic Obstacle Environment
Author(s):
Li Erchao1Wang Huiying1Yang Xiuping2Liang Bo1
(1.College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China)(2.College of Economy and Management,Lanzhou University of Technology,Lanzhou 730050,China)
Keywords:
mobile robotpath planningdynamic obstaclesNSGA-Ⅱ algorithm
PACS:
TP273
DOI:
10.3969/j.issn.1001-4616.2017.03.008
Abstract:
For the dynamic obstacles in the environment,how to use the global path planning algorithm to solve the optimal path of mobile robot,assuming that the motion range of the dynamic obstacle is known,so the hazard level is an interval number. Define a Pareto probability dominance formula,find out the dominant probability between different interval numbers,which can be used to determine which path is more secure. The traditional NSGA-Ⅱ algorithm is improved,and all solutions are classified into feasible and infeasible solutions according to the constraint function,the non feasible solution set is introduced to store the non feasible solution,guide feasible solutions to evolve better solutions. The environment model is established and simulated with MATLAB software. The simulation results show that for different obstacle environment,this method can be used to plan a safe path,compared with the traditional algorithm,the improved algorithm in solving the dynamic obstacle environment for robot path planning problem is more feasible and effective.

References:

[1] 周毅. 基于遗传算法的移动机器人路径规划研究[D].保定: 河北工业大学,2015.
[2]侯占军. 移动机器人自主避障方法的研究[D]. 北京:北京工业大学,2008.
[3]TANG B,ZHU Z,LUO J. Hybridizing particle swarm optimization and differential evolution for the mobile robot global path planning[J]. International journal of advanced robotic systems,2016,13(3):1-2.
[4]孙波,陈卫东,席裕庚. 基于粒子群优化算法的移动机器人全局路径规划[J]. 控制与决策,2005,20(9):1 052-1 055.
[5]陈智. 基于栅格法多目标路径规划研究[D]. 武汉:华中科技大学,2015.
[6]QU H,XING K,ALEXANDER T. An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots[J]. Neurocomputing,2013,120(10):509-517.
[7]吴青松. 基于遗传算法的移动机器人路径规划研究[D]. 成都:电子科技大学,2005.
[8]张勇,巩敦卫,任永强,等. 用于约束优化的简洁多目标微粒群优化算法[J]. 电子学报,2011,39(6):1 436-1 440.
[9]张勇. 区间多目标优化问题的微粒群优化理论及应用[D]. 徐州:中国矿业大学,2009.
[10]申晓宁,郭毓,陈庆伟,等. 多目标遗传算法在机器人路径规划中的应用[J]. 南京理工大学学报(自然科学版),2006,30(6):659-663.
[11]公茂果,焦李成,杨咚咚,等. 进化多目标优化算法研究[J]. 软件学报,2009,20(2):271-289.
[12]王明昭,王宇平,王晓丽,等. 一种均匀聚集距离的改进NSGA-Ⅱ算法[J]. 西安电子科技大学学报(自然科学版),2016,43(3):49-54.
[13]DEB K,AGRAWAL S,PRATAP A,et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ[J]. Lecture notes in computer science,2002,1917:849-858.
[14]陈婕,熊盛武,林婉如,等. NSGA-Ⅱ算法的改进策略研究[J]. 计算机工程与应用,2011,47(19):42-45.
[15]AHMED F,DEB K. Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms[J]. Soft computing,2013,17(7):1283-1299,.
[16]DEB K,JAIN H. An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach,part ii:handling constraints and extending to an adaptive approach[J]. IEEE transactions on evolutionary computation,2014,18(4):602-622.

Memo

Memo:
-
Last Update: 2017-09-30