[1] DASKALOYANNNIS C. Generalized deformed Virasoro algebras[J]. Modern Phys Lett A,1992,7(9):806-816.
[2]KASSEL C,TURAEV V G. Double construction for monoidal categories[J]. Acta Mathematica,1995,175:1-48.
[3]LIU K Q. Characterzations of the quantum Witt Algebra[J]. Lett Math Phys,1992,24(4):257-265.[4]HARTWIG J,LARSSON D,SILVESTROV S. Deformations of Lie algebras using σ-derivations[J]. J Algebra,2006,295:314-361.[5]MAKHLOUF A,SILVESTROV S. Hom-algebras and Hom-coalgebras[J]. J Algebra Appl,2010,9:553-589.[6]CAENEPEEL S,GOYVAERTS I. Monoidal Hom-Hopf algebras[J]. Comm Algebra,2011,39:2 216-2 240.[7]LIU L,SHEN B L. Radford’s biproducts and Yetter-Drinfel’d modules for monoidal Hom-Hopf algebras[J]. Journal of mathematical physics,2014,55:031701[8]YOU M M,WANG S H. Constructing new braided T-categories over monoidal Hom-Hopf algebras[J]. Jounal of mathematical physics,2014,55:111701.[9]KEGEL O H. Zur Nilpotenz gewisser assoziativer ringe[J]. Mathematische annalen,1963,149:258-260.[10]BAHTURIN Y,GIAMBRUNO A. Identities of sum of commutative subalgebras[J]. Rendiconti circolo del mathematico di palermo Ser,1994,43(2):250-258.[11]BAHTURIN Y,FISCHMAN D,MONTGOMERY S. On the generalized Lie structure of associative algebras[J]. Israel J of Math,1996,96:27-48.[12]WANG S H. On H-Lie structure of associative algebras in Yetter-Drinfel’d categories[J]. Comm in Algebra,2002,30(1):307-325.[13]WANG S H. An analogue of Kegel’s theorem for quasi-associative algebras[J]. Comm Algebra,2005,33(8):2 607-2 623.[14]ZHOU X,YANG T. Kegel’s theorem over weak Hopf group coalgebras[J]. J of Math(PRC),2013,33(2):228-236.[15]鹿道伟. 广义Drinfel’d量子偶与Yetter-Drinfel’d模表示范畴相关理论研究[D]. 南京:东南大学,2016.