|Table of Contents|

High Order Energy-Preserving Method for the KdV Equation(PDF)

¡¶ÄϾ©Ê¦´óѧ±¨£¨×ÔÈ»¿Æѧ°æ£©¡·[ISSN:1001-4616/CN:32-1239/N]

Issue:
2017Äê04ÆÚ
Page:
16-
Research Field:
¡¤ÊýѧÓë¼ÆËã»ú¿Æѧ¡¤
Publishing date:

Info

Title:
High Order Energy-Preserving Method for the KdV Equation
Author(s):
Jiang ChaolongSun JianqiangHe XunfengYan Jingye
College of Information Science and Technology,Hainan University,Haikou 570228,China
Keywords:
AVF methodKdV equationenergy-preserving method
PACS:
O241
DOI:
10.3969/j.issn.1001-4616.2017.04.004
Abstract:
The KdV equation is transformed into an infinite dimensional Hamiltonian system. The finite dimensional Hamiltonian system of the KdV equation is obtained by the pseudo-spectral method in spacial direction. Then,the finite dimensional Hamiltonian system is discretizated by the fourth order AVF method. Thus,a high order energy-preserving scheme of the KdV equation is derived. The evolution of the solitary wave is simulated by the high order energy-preserving scheme. Numerical results show that the proposed scheme can preserve the discrete energy of the KdV equation exactly.

References:

[1] FENG K,QIN M Z. Symplectic geometric algorithms for Hamiltonian systems[M]. Heidelberg,Hangzhou:Springer and Zhejiang Science and Technology Publishing House,2010.
[2]BRIDGES T J,REICH S. Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity[J]. Physics Letters A,2001,284(4):184-193.
[3]ÇØÃÏÕ×,ÍõÓê˳.ƫ΢·Ö·½³ÌÖеı£½á¹¹Ëã·¨[M]. º¼ÖÝ:Õã½­¿Æѧ¼¼Êõ³ö°æÉç,2012.[4]HAIRER E,LUBICH C,WANNER G. Geometric numerical integration:structure-preserving algorithms for ordinary differential equations[M]. 2nd. Berlin,Heidelberg:Springer-Verlag,2006.[5]QUISPEL G R W,MCLAREN D I. A new class of energy-preserving numerical integration methods[J]. Journal of physics A:mathematical and theoretical,2008,41(4):045206.[6]MCLACHLAN R I,QUISPEL G R W,ROBIDOUX N. Geometric integration using discrete gradients[J]. Philosophical transactions of the royal society of London A:mathematical,physical and engineering sciences,1999,357(1754):1 021-1 045.[7]CELLEDONI E,GRIMM V,MCLACHLAN R I,et al. Preserving energy resp. dissipation in numerical PDEs using the¡°Average Vector Field¡±method[J]. Journal of computational physics,2012,231(20):6 770-6 789.[8]GONG Y Z,CAI J X,WANG Y S. Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs[J]. Journal of computational physics,2014,279:80-102.[9]ZHAO P F,QIN M Z. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation[J]. Journal of physics A:mathematical and general,2000,33(18):3 613.[10]WANG Y S,WANG B,QIN M Z. Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes[J]. Applied mathematics and computation,2004,149(2):299-326.[11]WANG Y S,WANG B,CHEN X. Multisymplectic Euler box scheme for the KdV equation[J]. Chinese physics letters,2007,24(2):312.[12]ËÎËɺÍ,³ÂÑÇÃú,Ö컪¾ý. KdV·½³ÌµÄ¶àÐÁFourierÄâÆ׸ñʽ¼°Æä¹ÂÁ¢²¨½âµÄÊýֵģÄâ[J]. °²»Õ´óѧѧ±¨(×ÔÈ»¿Æѧ°æ),2010,34(4):1-7.[13]ASCHER U M,MCLACHLAN R I. Multisymplectic box schemes and the Korteweg-de Vries equation[J]. Applied numerical mathematics,2004,48(3):255-269.[14]L¨¹ Z Q,WANG Y S,SONG Y Z. A new multi-symplectic scheme for the KdV equation[J]. Chinese physics letters,2011,28(6):060205.[15]KARAS?ZEN B, ÿðþ ‰C IM ÿðþ ‰C EK G. Energy preserving integration of bi-Hamiltonian partial differential equations[J]. Applied mathematics letters,2013,26(12):1 125-1 133.

Memo

Memo:
-
Last Update: 2017-12-30