[1] BESSE C,DEGOND P,DELUZET F,et al. A model of ionospheric plasma modeling[J]. Math models methods Appl Sci,2004,14:393-415.
[2]DEGOND P,MARKOWICH P. A steady state potential flow model for semiconductors[J]. Ann Mat Pura Appl,1993,52:87-98.
[3]FENG Y,WANG S,LI X. Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term[J]. J Math Meth Appl Sci,2016(39):2 514-2 528.[4]YONG W A. Entropy and global existence for hyperbolic balance laws[J]. Arch Ration Mech Anal,2004,172:247-266.[5]LI T T,YU W C. Boundary value problems for quasilinear hyperbolic systems[M]//Duke Univ,Math. Ser.,vol. V. Durham:Duke University,1985.[6]KATO T. The Cauchy problem for quasi-linear symmetric hyperbolic systems[J]. Arch Ration Mech Anal,1975,58:181-205.[7]GUO Y,STRAUSS W. Stability of Semiconductor states with insulating and contact boundary conditions[J]. Arch rational Mech Anal,2005,170:1-30.[8]LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves[J]. CBMS-NSF Reg Conf Ser Appl Math,SIAM,Philadelphia,1973.[9]JUNGEI A. Quasi-hydrodynamie Semiconductor Equations,Progress in Nonlinear Differential Equations and Their Applica-tions[M]. Berlin:Birkhanser 2001.[10]LUO T,NATALINI R,XIN Z,Large time behavior of the solutions to a hydrodynamic model for semiconductors[J]. SIAM J Appl Math,1999,59:810-830.[11]CHEN F. Introduction to Plasma Physics and Controlled Fusion[M]. New York:Plenum Press,1984.[12]FRIEDRICHS K O. Symmetric hyperbolic linear differential equations[J]. Commun Pure Appl Math,1954,7:345-392.[13]FENG Y H,WANG S,KAWASHIMA S C. Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system[J]. Appl Math,2012,24(14):2 851-2 884.[14]WANG Y,TAN Z. Stability of steady states of the compressible Euler-Poisson system in R[J]. J Math Anal Appl,2015,422:1 058-1 071.[15]PENG Y J. Stability of non-constant equilibrium solutions for Euler-Maxwell equations[J]. J Math Pure Appl,2015,103:39-67.[16]KLAINERMAN S,MAJDA A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[J]. Commun Pure Appl Math,1981,34:481-524.