|Table of Contents|

Stability of Large Steady-State Solutions toNon-Isentropic Euler-Maxwell Systems(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2017年04期
Page:
26-
Research Field:
·数学与计算机科学·
Publishing date:

Info

Title:
Stability of Large Steady-State Solutions toNon-Isentropic Euler-Maxwell Systems
Author(s):
Li TingYang Yongfu
College of Science,Hohai University,Nanjing 211100,China
Keywords:
non-isentropic Euler-Maxwell system global smooth solutions stability energy estimates
PACS:
O175.28
DOI:
10.3969/j.issn.1001-4616.2017.04.006
Abstract:
Stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Maxwell system without temperature damping term are studied. New variables are introduced and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. The proof is based on an induction argument on the order of the derivatives of solutions in energy and time dissipation estimates. This allows to make the proof of the stability result very simple and concise.

References:

[1] BESSE C,DEGOND P,DELUZET F,et al. A model of ionospheric plasma modeling[J]. Math models methods Appl Sci,2004,14:393-415.
[2]DEGOND P,MARKOWICH P. A steady state potential flow model for semiconductors[J]. Ann Mat Pura Appl,1993,52:87-98.
[3]FENG Y,WANG S,LI X. Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term[J]. J Math Meth Appl Sci,2016(39):2 514-2 528.[4]YONG W A. Entropy and global existence for hyperbolic balance laws[J]. Arch Ration Mech Anal,2004,172:247-266.[5]LI T T,YU W C. Boundary value problems for quasilinear hyperbolic systems[M]//Duke Univ,Math. Ser.,vol. V. Durham:Duke University,1985.[6]KATO T. The Cauchy problem for quasi-linear symmetric hyperbolic systems[J]. Arch Ration Mech Anal,1975,58:181-205.[7]GUO Y,STRAUSS W. Stability of Semiconductor states with insulating and contact boundary conditions[J]. Arch rational Mech Anal,2005,170:1-30.[8]LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves[J]. CBMS-NSF Reg Conf Ser Appl Math,SIAM,Philadelphia,1973.[9]JUNGEI A. Quasi-hydrodynamie Semiconductor Equations,Progress in Nonlinear Differential Equations and Their Applica-tions[M]. Berlin:Birkhanser 2001.[10]LUO T,NATALINI R,XIN Z,Large time behavior of the solutions to a hydrodynamic model for semiconductors[J]. SIAM J Appl Math,1999,59:810-830.[11]CHEN F. Introduction to Plasma Physics and Controlled Fusion[M]. New York:Plenum Press,1984.[12]FRIEDRICHS K O. Symmetric hyperbolic linear differential equations[J]. Commun Pure Appl Math,1954,7:345-392.[13]FENG Y H,WANG S,KAWASHIMA S C. Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system[J]. Appl Math,2012,24(14):2 851-2 884.[14]WANG Y,TAN Z. Stability of steady states of the compressible Euler-Poisson system in R[J]. J Math Anal Appl,2015,422:1 058-1 071.[15]PENG Y J. Stability of non-constant equilibrium solutions for Euler-Maxwell equations[J]. J Math Pure Appl,2015,103:39-67.[16]KLAINERMAN S,MAJDA A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[J]. Commun Pure Appl Math,1981,34:481-524.

Memo

Memo:
-
Last Update: 2017-12-30