|Table of Contents|

Magnetically Tunable Resonance Shift of Ring/ColumnMagnetoelectric Composite Vibrator(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2017年04期
Page:
57-
Research Field:
·物理学·
Publishing date:

Info

Title:
Magnetically Tunable Resonance Shift of Ring/ColumnMagnetoelectric Composite Vibrator
Author(s):
Gao Rong1Luo Xiaobin1Wang Wei12
(1.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China)(2.Laboratory of Modern Acoustics of MOE,Nanjing University,Nanjing 210093,China)
Keywords:
magnetoelectric coupling effectPZT-ring/TDF-columnresonant frequencyconstitutive equations
PACS:
TP212.1
DOI:
10.3969/j.issn.1001-4616.2017.04.009
Abstract:
In consideration of magnetoelectric coupling effect,magnetically tunable electromechanical resonance with a dc bias magnetic field is proposed. Using PZT(Pb(Zr,Ti)O3)-ring/TDF(TbxDy1-xFe2-y)-column magnetoelectric composite vibrator,magnetically tunable resonance shift are theoretically studied and experimentally measured,respectively. Constitutive equations of piezoelectric and magnetostrictive phase are employed to describe the electric elastic and magnetic elastic coupling,and piezoelectric phase capacitance is a function of magnetic field,resonance frequency and material parameters. Frequency-dependent capacitances of the PZT-ring/TDF-column composite vibrator are numerically simulated under different magnetic field intensities. The resonance frequency shift rule of the composite vibrator was experimental studied. With magnetic field increasing,the fundamental frequency and primary resonance frequency of the composite vibrator increase to high frequencies and then to low frequencies,the resonance shift reaches maximum under H=200 Oe,the resonance frequency offsets are 9.50 kHz and 3.50 kHz,respectively. Numerical simulation of the resonant frequency offset curve is consistent with the experimental results.

References:

[1] YAO Y P,HOU Y,DONG S N,et al. Giant magnetodielectric effect in Terfenol-D/PZT magnetoelectric laminate composite[J]. J Appl Phys,2011,110(1-4):014508.
[2]WU G J,NAN T X,ZHANG R,et al. Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance[J]. Appl Phys Lett,2013,103(1-5):182905.
[3]WU Z,XIANG Z H,JIA Y M,et al. Electrical impedance dependence on the direct and converse magnetoelectric resonances in magnetostrictive/piezoelectric laminated composites[J]. J Appl Phys,2012,112(1-3):106102.
[4]LOYAU V,MORIN V,CHAPLIER G,et al. Magnetoelectric effect in layered ferrite/PZT composites. Study of the demagnetizing effect on the magnetoelectric behavior[J]. J Appl Phys,2015,117(1-11):184102.
[5]ISRAEL C,PETROV V M,SRINIVASAN G,et al. Magnetically tuned mechanical resonances in magnetoelectric multilayer capacitors[J]. Appl Phys Lett,2009,95(1-3):072505.
[6]KARMARKAR M,DONG S X,LI J F,et al. Magnetoelectric laminate based DC magnetic field sensor[J]. Phys Stat Sol(RRL),2008,2(3):108-110.v[7]肖庭富,文玉梅,李平,等. Terfenol-D/SAW谐振器/TDF复合传感器[J]. 传感技术学报,2008,21(6):924-928.
[8]WANG W,YE J J,WU J,et al. Single dcmagnetic field tunable electromechanical resonance in Terfenol-D/PZT/Terfenol-D trilayer composites[J]. Journal of magnetism and magnetic materials,2014,366:40-43.
[9]WANG W,WU J,LUO X B,et al. Jump effect based magnetically tunable resonance of PZT-ring/TDF-strip composite with improved sensitivity[J]. Sensors and actuators A:physical,2015,225:47-52.
[10]BAYRASHEV A,ROBBINS W P,ZIAIE B. Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites[J]. Sensors and actuators A:physical,2004,114:244-249.
[11]BICHURIN M I,PETROV V M,SRINIVASAN G. Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers[J]. Phys Rev B,2003,68:054402.

Memo

Memo:
-
Last Update: 2017-12-30