[1] PATERA A T. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. Journal of computational physics,1984,54(3):468-488.
[2]MADAY Y,PATERA A. Spectral element methods for the incompressible Navier-Stokes equations[J]. State-of-the-art surveys on computational mechanics,1989:71-143.
[3]BERNARDI C,MADAY Y. Spectral Method[C]//Proceedings of Handbook of Numerical Analysis,North-Holland,1997.
[4]CANUTO C,HUSSAINI M Y,QUARTERONI A,et al. Spectral methods in fluid dynamics[M]. Berlin:Springer-Verlag,1988:285-331.
[5]GOTTLIEB D,ORSZAG D. Numerical analysis of spectral methods:theory and applications[J]. For Industr & Appl Maph,1977,45(4):969-970.
[6]GUO B Y. Spectral methods and their applications[M]. Singapore:World Scientific,1998.
[7]CHEN L Z,SHEN J,XU C J. A triangle spectral method for the Stokes equations[J]. Numer Math-Theory Me,2011,4(2):158-179.
[8]CHEN L Z,SHEN J,XU C J. A unstructured nodal spectral-element method for the Navier-Stokes equations[J]. Commun Comput Phys,2011,12(1):315-336.
[9]SHEN J,WANG L L,LI H. A triangular spectral element method using fully tensorial rational basis functions[J]. SIAM J Numer Anal,2009,47(3):1 619-1 650.
[10]BERNARDI C,MADAY Y. Spectral methods[J]. Handbook of numerical analysis,1997(5):209-485.
[11]BABUSKA I,OSBORN J E. Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods,with particular attention to the case of multiple eigenvalues[J]. SIAM J Numer Anal,1987,24(6):1 249-1 276.