|Table of Contents|

An Unstructured Spectral Element Method for the LaplaceEigenvalue Problem on Regular Polygons(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年01期
Page:
26-
Research Field:
·数学·
Publishing date:

Info

Title:
An Unstructured Spectral Element Method for the LaplaceEigenvalue Problem on Regular Polygons
Author(s):
Wen YongsongPang YichengZhang JunZhu Shujuan
School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,China
Keywords:
Laplace operatoreigenvalue problemunstructured spectral element method
PACS:
O241.82
DOI:
10.3969/j.issn.1001-4616.2018.01.006
Abstract:
In this paper,we use an unstructured spectral element method which mixed triangularand quadrangle for the Laplace eigenvalue problem on the regular polygon domain. We construct the basis functions by combing with the Legendre polynomials for the interior element and boundary. The convergence of the eigenvalue and numerical implement are also given. Finally,a series of numerical examples are provided to support the theoretical results and demonstrate the accuracy and efficiency of this methods.

References:

[1] PATERA A T. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. Journal of computational physics,1984,54(3):468-488.
[2]MADAY Y,PATERA A. Spectral element methods for the incompressible Navier-Stokes equations[J]. State-of-the-art surveys on computational mechanics,1989:71-143.
[3]BERNARDI C,MADAY Y. Spectral Method[C]//Proceedings of Handbook of Numerical Analysis,North-Holland,1997.
[4]CANUTO C,HUSSAINI M Y,QUARTERONI A,et al. Spectral methods in fluid dynamics[M]. Berlin:Springer-Verlag,1988:285-331.
[5]GOTTLIEB D,ORSZAG D. Numerical analysis of spectral methods:theory and applications[J]. For Industr & Appl Maph,1977,45(4):969-970.
[6]GUO B Y. Spectral methods and their applications[M]. Singapore:World Scientific,1998.
[7]CHEN L Z,SHEN J,XU C J. A triangle spectral method for the Stokes equations[J]. Numer Math-Theory Me,2011,4(2):158-179.
[8]CHEN L Z,SHEN J,XU C J. A unstructured nodal spectral-element method for the Navier-Stokes equations[J]. Commun Comput Phys,2011,12(1):315-336.
[9]SHEN J,WANG L L,LI H. A triangular spectral element method using fully tensorial rational basis functions[J]. SIAM J Numer Anal,2009,47(3):1 619-1 650.
[10]BERNARDI C,MADAY Y. Spectral methods[J]. Handbook of numerical analysis,1997(5):209-485.
[11]BABUSKA I,OSBORN J E. Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods,with particular attention to the case of multiple eigenvalues[J]. SIAM J Numer Anal,1987,24(6):1 249-1 276.

Memo

Memo:
-
Last Update: 2018-03-31