[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
[2]TOMBROS N,JOZSA C,POPINCIUC M,et al. Electronic spin transport and spin precession in single graphene layers at room temperature[J]. Nature,2007,448:571-574.
[3]WILLIAMS J R,DICARLO L,MARCUS C M. Quantum Hall effect in a gate-controlled p-n junction of graphene[J]. Science,2007,317:638-641.
[4]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438:197-200.
[5]PUREWAL M S,ZHANG Y,KIM P. Unusual transport properties in carbon based nanoscaled materials:nanotubes and graphene[J]. Physica status solidi,2006,243(13):3 418-3 422.
[6]NETO A H C. The electronic properties of graphene[J]. Vacuum,2008,83(10):1 248-1 252.
[7]NAKADA K,FUJITA M,DRESSELHAUS G,et al. Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J]. Phys Rev B,1996,54(24):17 954-17 961.
[8]SON Y W,COHEN M L,LOUIE S G. Erratum:energy gaps in graphene nanoribbons[J]. Phys Rev Lett,2006,97,216 803-216 806.
[9]PERES N M R,NETO A H C,GUINEA F. Erratum:Conductance quantization in mesoscopic graphene[J]. Phys Rev B,2006,73(23):1 469-1 475.
[10]GUO G P,LIN Z R,TU T,et al. Quantum computation with graphene nanoribbon[J]. New journal of physics,2008,11(12):2 910-2 915.
[11]BERAHMAN M,SHEIKHI M H. Transport properties of zigzag graphene nanoribbon decorated with copper clusters[J]. Journal of applied physics,2014,116:093701-1-093701-8.
[12]LIBISCH F,ROTTER S,BURGD?RFER J. Coherent transport through graphene nanoribbons in the presence of edge disorder[J]. New journal of physics,2012,14(12):1 367-2 630.
[13]PI S T,DOU K P,TANG C S,et al. Site-dependent doping effects on quantum transport in zigzag graphene nanoribbons[J]. Carbon,2015,94:196-201.
[14]EZAWA M. Peculiar width dependence of the electronic property of carbon nanoribbons[J]. Physics,2006,73(4):5 432-5 440.
[15]FUJITA M,WAKABAYASHI K,NAKADA K,et al. Peculiar localized state at zigzag graphite edge[J]. Journal of the physical society of Japan,2013,65:1 920-1 923.
[16]NAKADA K,FUJITA M,DRESSELHAUS G,et al. Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J]. Phys Rev B,1997,54(24):17 954-17 961.
[17]YANG L,COHEN M L,LOUIE S G. Magnetic edge-state excitons in zigzag graphene nanoribbons[J]. Phys Rev Lett,2008,101(18):186 401-186 404.
[18]WAKABAYASHI K. 12-electronic and magnetic properties of nanographites[J]. Phys Rev B,1999,59(12):279-304.
[19]YAO W,YANG S A,NIU Q. Edge states in graphene:from gapped flat-band to gapless chiral modes[J]. Phys Rev Lett,2009,102:096801-096804.
[20]SON Y W,COHEN M L,LOUIE S G. Half-metallic graphene nanoribbons[J]. Nature,2006,444:347-349.
[21]GUO J,GUNLYCKE D,WHITE C T. Field effect on spin-polarized transport in graphene nanoribbons[J]. Applied physics letters,2008,92(16):163 109-163 111.
[22]GUNLYCKE D,ARESHKIN D A,LI J,et al. Graphene nanostrip digital memory device[J]. Nano letters,2008,7(12):3 608-3 611.
[23]BARINGHAUS J,MING R,EDLER F,et al. Exceptional ballistic transport in epitaxial graphene nanoribbons[J]. Nature,2014,506:349-354.
[24]BARINGHAUS J,SETTNES M,APROJANZ J,et al. Electron interference in ballistic graphene nanoconstrictions[J]. Phys Rev Lett,2016,116(18):186 602-186 606.
[25]DRESSELHAUS G F,DRESSELHAUS M S. Spin-orbit interaction in graphite[J]. Phys Rev,1965,140(A401):433-440.
[26]BYCHKOV Y A,RASHBA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of physics C solid state physics,1984,17(33):6 039-6 045.
[27]YAO Y,YE F,QI X L,et al. Spin-orbit gap of graphene:first-principles calculations[J]. Phys Rev B,2007,75(4):041401-041404.
[28]KANE C L,MELE E J. Quantum spin Hall effect in graphene[J]. Phys Rev Lett,2005,95(22):226 801-226 804.
[29]KANE C L,MELE E J. Z2 topological order and the quantum spin Hall effect[J]. Phys Rev Lett,2005,95(14):6 802-6 805.
[30]LI H,SHENG L,XING D Y. Connection of edge states to bulk topological invariance in a quantum spin Hall state[J]. Phys Rev Lett,2012,108(19):196 806-196 810.
[31]盛利. 自旋陈数理论和时间反演对称破缺的量子自旋霍尔效应[J]. 物理学进展,2014(1):10-27.
[32]EZAWA M. Valley-polarized metals and quantum anomalous Hall effect in silicene[J]. Phys Rev Lett,2012,109(5):515-565.
[33]EZAWA M. Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons[J]. Applied physics letters,2013,102(17):172 103-172 107.
[34]KIKUTAKE K,EZAWA M,NAGAOSA N. Edge states in silicene nanodisks[J]. Phys Rev B,2013,88:4 629-4 638.
[35]BARINGHAUS J,MING R,EDLER F,et al. Exceptional ballistic transport in epitaxial graphene nanoribbons[J]. Nature,2014,506(7488):349-354.
[36]BARINGHAUS J,SETTNES M,APROJANZ J,et al. Electron interference in ballistic graphene nanoconstrictions[J]. Phys Rev Lett,2016,116(18):186 602-186 606.
[37]DROTH M,BURKARD G. Electron spin relaxation in graphene nanoribbon quantum dots[J]. Phys Rev B,2013,87(20):205 432-205 442.
[38]HUERTAS H D,GUINEA F,BRATAAS A. Spin-orbit coupling in curved graphene,fullerenes,nanotubes,and nanotube caps[J]. Phys Rev B,2006,74(15):2 952-2 961.
[39]WANG Z,HAO N,ZHANG P. Topological winding properties of spin edge states in Kane-Mele graphene model[J]. Phys Rev B,2009,80(11):754-758.
[40]QIAO Z,TSE W K,JIANG H,et al. Two-dimensional topological insulator state and topological phase transition in bilayer graphene[J]. Phys Rev Lett,2011,107(25):1-9.
[41]HU J,ALICEA J,WU R,et al. Giant topological insulator gap in graphene with 5d adatoms[J]. Phys Rev Lett,2012,109(26):266 801-266 805.
[42]CASTRO NETO A H,GUINEA F. Impurity-induced spin-orbit coupling in graphene.[J]. Phys Rev Lett,2009,103(2):026804-026807.
[43]WANG H,PI S T,KIM J,et al. Possibility of realizing quantum spin Hall effect at room temperature in stanene/Al2O3(0001)[J]. Phys Rev B,2016,94(3):035112-035126.
[44]MA Y,DAI Y,NIU C,et al. Halogenated two-dimensional germanium:candidate materials for being of quantum spin Hall state[J]. Journal of materials chemistry,2012,22(25):12 587-12 591.
[45]WANG Y,SHENG Y,YANG A,et al. Edge states in graphene:from gapped flat-band to gapless chiral modes[J]. Phys Rev Lett,2008,102(102):096801-096804.
[46]FUJITA M,NAKADA K,WAKABAYASHI K,et al. Peculiar electronic state on graphite edge:finite size effect on graphite[C]//Meeting of the Physical Society of Japan. The Physical Society of Japan. Japan,1996.
[47]HUBBARD J. Electron correlations in narrow energy bands[J]. Proc R Soc London A,1963,276:238-257.
[48]王雪梅,刘红. 锯齿型石墨烯纳米带的能带研究[J]. 物理学报,2011,60(4):047102-047112.
[49]LIU H,HU B,LIU N. The opposite induced magnetic moment in narrow zigzag graphene nanoribbons[J]. Phys Lett A,2016,380(44):3 738-3 742.
[50]STAROSTIN E L,GH V D H. The shape of a M?bius strip[J]. Nature material,2007,6(8):563-567.
[51]LU Y,ZHAO S,ZHANG Y,et al. Valley-polarized insulating states in zigzag silicene nanoribbons[J]. Materials research express,2014,1(4):045009-045019.
[52]LU Y,LU W,LIANG W,et al. Energy splitting and optical activation of triplet excitons in zigzag-edged graphene nanoribbons[J]. Phys Rev B,2013,88(16):608-613.