|Table of Contents|

A Note on τ-Rigid Modules(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年02期
Page:
23-
Research Field:
·数学与计算机科学·
Publishing date:

Info

Title:
A Note on τ-Rigid Modules
Author(s):
Xie ZongzhenZhang Xiaojin
School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China
Keywords:
τ-rigid moduleinjective moduleinjective dimensionlocal algebra
PACS:
O154.2
DOI:
10.3969/j.issn.1001-4616.2018.02.005
Abstract:
For a basic indecomposable finite dimensional algebra Λ,if all τ-rigid Λ-modules are projective,then Λ is local. For any basic indecomposable finite dimensional algebra Γ,then the injective module DΓ is τ-rigid if and only if the injective dimension of Γ is at most one,where D is the usual duality.

References:

[1] ADACHI T,IYAMA O,REITEN I. τ-tilting theory[J]. Composito mathematica,2014,150(3):415-452.
[2]MIZUNO Y. Classifying τ-tilting modules over preprojective algebras of Dynkin type[J]. Mathematische zeitschrift,2014,277(3):665-690.
[3]WEI J Q. τ-tilting theory and *-modules[J]. Journal of algebra,2014,414:1-5.
[4]DEMONET L,IYAMA O,JASSO G. τ-tilting finite algebras and g-vectors[J]. ArXiv:1503.00285.
[5]HUANG Z Y,ZHANG Y Y. G-stable support τ-tilting modules[J]. Frontiers of mathematics in China,2016,11(4):1057-1077.[6]IYAMA O,JORGENSEN P,YANG D. Intermediate co-t-structures,two-term silting objects,τ-tilting modules and torsion classes[J]. Algebra and number theory,2014,8(10):2413-2431.
[7]JASSO G. Reduction of τ-tilting modules and torsion pairs[J]. International mathematics,2015,16:7190-7237.
[8]谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版),2016,51(2):16-20.
[9]ASSEM I,SIMSON D,SKOWROAN’GSKI A. Elements of the representation theory of associative algebras[M]. 北京:世界图书出版公司北京公司,2011:193.

Memo

Memo:
-
Last Update: 2018-11-06