|Table of Contents|

Influence of Environment on Edge Band ofNarrow Zigzag Graphene Nanoribbons(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年02期
Page:
54-
Research Field:
·物理学·
Publishing date:

Info

Title:
Influence of Environment on Edge Band ofNarrow Zigzag Graphene Nanoribbons
Author(s):
Liu NaHu BianLiu Hong
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
Keywords:
zigzag graphene nanoribbonshopping coefficientband structure
PACS:
O469
DOI:
10.3969/j.issn.1001-4616.2018.02.010
Abstract:
Based on the tight binding Kane-Mele model describing the spin orbit coupling,we simulate the effect of environment on the edge states of graphene nanoribbons by changing the hopping coefficient between atoms at the edges. The theoretical results show that when adjusting both of the hopping coefficient at two edge sides,with the increase of the hopping coefficient,the Fermi wave vectors of the two sub-band structures corresponding to two edges,respectively,are close to 0.5,and the energy band gap decreases linearly. Further studies show that by adjusting the hopping coefficient at one single edge side,we can control the structure characteristics of the corresponding sub-band structures.

References:

[1] NAKADA K,FUJITA M,DRESSELHAUS G,et al. Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J]. Phys Rev B,1996,54(24):17954-17961.
[2]SUGAI Y. Energy gaps in graphene nanoribbons[J]. Phys Rev Lett,2006,97(21):6803-6806.
[3]PERES N M R,NETO A H C,GUINEA F. Conductance quantization in mesoscopic graphene[J]. Phys Rev B,2006,73(19):5411-5418.
[4]BERAHMAN M,SHEIKHI M H. Transport properties of zigzag graphene nanoribbon decorated with copper clusters[J]. Journal of applied physics,2014,116:093701-093701-8.
[5]LIBISCH F,ROTTER S,BURGD?RFER J. Coherent transport through graphene nanoribbons in the presence of edge disorder[J]. New journal of physics,2011,14(12):3006-3024.[6]EZAWA M. Peculiar width dependence of the electronic property of carbon nanoribbons[J]. Physics,2006,73(4):5432-5449.
[7]YANG L,COHEN M L,LOUIE S G. Magnetic edge-state excitons in zigzag graphene nanoribbons[J]. Phys Rev Lett,2008,101(18):6401-6404.
[8]WAKABAYASHI K. 12-electronic and magnetic properties of nanographites[J]. Phys Rev B,1999,59(12):8271-8282.
[9]YAO W,YANG S A,NIU Q. Edge states in graphene:from gapped flat-band to gapless chiral modes[J]. Phys Rev Lett,2008,102(09):6801-6804.
[10]KANE C L,MELE E J. Quantum spin Hall effect in graphene[J]. Phys Rev Lett,2005,95(22):6801-6804.
[11]KANE C L,MELE E J. Z2 topological order and the quantum spin Hall effect.[J]. Phys Rev Lett,2005,95(14):6802-6805.
[12]LI H,SHENG L,XING D Y. Connection of edge states to bulk topological invariance in a quantum spin Hall state[J]. Phys Rev Lett,2012,108(19):6806-6810.
[13]YAO Y,YE F,QI X L,et al. Spin-orbit gap of graphene:first-principles calculations[J]. Phys Rev B,2006,75(4):1401-1404.
[14]MAJIDI L,ASGARI R. Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve[J]. Phys Rev B,2014,90(16):5440-5452.
[15]EHLEN N,SENKOVSKIY B V,FEDOROV A V,et al. Evolution of electronic structure of few-layer phosphorene from angle-resolved photoemission spectroscopy of black phosphorous[J]. Phys Rev B,2016,94(24):5410-5421.
[16]Wang Z G,Hao N N,Zhang P. Topological winding properties of spin edge states in Kane-Mele graphene model[J]. Phys Rev B,2009,80(11):754-758.
[17]盛利. 自旋陈数理论和时间反演对称破缺的量子自旋霍尔效应[J]. 物理学进展,2014(1):10-27.
[18]SON Y W,COHEN M L,LOUIE S G. Half-metallic graphene nanoribbons.[J]. Nature,2006,444(7 117):347-349.
[19]GUO J,GUNLYCKE D,WHITE C T. Field effect on spin-polarized transport in graphene nanoribbons[J]. Applied physics letters,2008,92(16):163109-163109-3.
[20]GUNLYCKE D,ARESHKIN D A,LI J,et al. Graphene nanostrip digital memory device[J]. Nano letters,2007,7(12):3608-3611.
[21]LIU H,HU B,LIU N. The opposite induced magnetic moment in narrow zigzag graphene nanoribbons[J]. Phys Lett A,2016,380:3738-3742.
[22]胡边,刘娜,刘红. 锯齿型石墨烯纳米带边界态[J]. 南京师大学报(自然科学版),2018,41(1):42-49.
[23]DRESSELHAUS G F,DRESSELHAUS M S,MAVROIDES J G. Spin-orbit interaction in graphite[J]. Carbon,1965,3(3):325-325.
[24]BYCHKOV Y A,RASHABA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of physics C:solid state physics,1984,17:6039-6045.
[25]SHENG L,SHENG D N,TING C S,et al. Nondissipative spin Hall effect via quantized edge transport.[J]. Phys Rev Lett,2005,95(13):6602-6605.
[26]YANG Y,XU Z,SHENG L,et al. Time-reversal-symmetry-broken quantum spin Hall effect[J]. Phys Rev Lett,2011,107(6):6602-6606.
[27]BARINGHAUS J,SETTNES M,APROJANZ J,et al. Electron interference in ballistic graphene nanoconstrictions[J]. Phys Rev Lett,2016,116(18):6602-6606.

Memo

Memo:
-
Last Update: 2018-11-06