[1] NAKADA K,FUJITA M,DRESSELHAUS G,et al. Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J]. Phys Rev B,1996,54(24):17954-17961.
[2]SUGAI Y. Energy gaps in graphene nanoribbons[J]. Phys Rev Lett,2006,97(21):6803-6806.
[3]PERES N M R,NETO A H C,GUINEA F. Conductance quantization in mesoscopic graphene[J]. Phys Rev B,2006,73(19):5411-5418.
[4]BERAHMAN M,SHEIKHI M H. Transport properties of zigzag graphene nanoribbon decorated with copper clusters[J]. Journal of applied physics,2014,116:093701-093701-8.
[5]LIBISCH F,ROTTER S,BURGD?RFER J. Coherent transport through graphene nanoribbons in the presence of edge disorder[J]. New journal of physics,2011,14(12):3006-3024.[6]EZAWA M. Peculiar width dependence of the electronic property of carbon nanoribbons[J]. Physics,2006,73(4):5432-5449.
[7]YANG L,COHEN M L,LOUIE S G. Magnetic edge-state excitons in zigzag graphene nanoribbons[J]. Phys Rev Lett,2008,101(18):6401-6404.
[8]WAKABAYASHI K. 12-electronic and magnetic properties of nanographites[J]. Phys Rev B,1999,59(12):8271-8282.
[9]YAO W,YANG S A,NIU Q. Edge states in graphene:from gapped flat-band to gapless chiral modes[J]. Phys Rev Lett,2008,102(09):6801-6804.
[10]KANE C L,MELE E J. Quantum spin Hall effect in graphene[J]. Phys Rev Lett,2005,95(22):6801-6804.
[11]KANE C L,MELE E J. Z2 topological order and the quantum spin Hall effect.[J]. Phys Rev Lett,2005,95(14):6802-6805.
[12]LI H,SHENG L,XING D Y. Connection of edge states to bulk topological invariance in a quantum spin Hall state[J]. Phys Rev Lett,2012,108(19):6806-6810.
[13]YAO Y,YE F,QI X L,et al. Spin-orbit gap of graphene:first-principles calculations[J]. Phys Rev B,2006,75(4):1401-1404.
[14]MAJIDI L,ASGARI R. Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve[J]. Phys Rev B,2014,90(16):5440-5452.
[15]EHLEN N,SENKOVSKIY B V,FEDOROV A V,et al. Evolution of electronic structure of few-layer phosphorene from angle-resolved photoemission spectroscopy of black phosphorous[J]. Phys Rev B,2016,94(24):5410-5421.
[16]Wang Z G,Hao N N,Zhang P. Topological winding properties of spin edge states in Kane-Mele graphene model[J]. Phys Rev B,2009,80(11):754-758.
[17]盛利. 自旋陈数理论和时间反演对称破缺的量子自旋霍尔效应[J]. 物理学进展,2014(1):10-27.
[18]SON Y W,COHEN M L,LOUIE S G. Half-metallic graphene nanoribbons.[J]. Nature,2006,444(7 117):347-349.
[19]GUO J,GUNLYCKE D,WHITE C T. Field effect on spin-polarized transport in graphene nanoribbons[J]. Applied physics letters,2008,92(16):163109-163109-3.
[20]GUNLYCKE D,ARESHKIN D A,LI J,et al. Graphene nanostrip digital memory device[J]. Nano letters,2007,7(12):3608-3611.
[21]LIU H,HU B,LIU N. The opposite induced magnetic moment in narrow zigzag graphene nanoribbons[J]. Phys Lett A,2016,380:3738-3742.
[22]胡边,刘娜,刘红. 锯齿型石墨烯纳米带边界态[J]. 南京师大学报(自然科学版),2018,41(1):42-49.
[23]DRESSELHAUS G F,DRESSELHAUS M S,MAVROIDES J G. Spin-orbit interaction in graphite[J]. Carbon,1965,3(3):325-325.
[24]BYCHKOV Y A,RASHABA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of physics C:solid state physics,1984,17:6039-6045.
[25]SHENG L,SHENG D N,TING C S,et al. Nondissipative spin Hall effect via quantized edge transport.[J]. Phys Rev Lett,2005,95(13):6602-6605.
[26]YANG Y,XU Z,SHENG L,et al. Time-reversal-symmetry-broken quantum spin Hall effect[J]. Phys Rev Lett,2011,107(6):6602-6606.
[27]BARINGHAUS J,SETTNES M,APROJANZ J,et al. Electron interference in ballistic graphene nanoconstrictions[J]. Phys Rev Lett,2016,116(18):6602-6606.