|Table of Contents|

Flame Detection Based on Faster R-CNN Model(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年03期
Page:
1-
Research Field:
·人工智能算法与应用专栏·
Publishing date:

Info

Title:
Flame Detection Based on Faster R-CNN Model
Author(s):
Yan Yunyang12Zhu Xiaoyu12Liu Yi’an2Gao Shangbing1
(1.Faculty of Computer & Software Engineering,Huaiyin Institute of Technology,Huaian 223003,China)(2.School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
Keywords:
Faster R-CNNRPNFast R-CNNflame detection
PACS:
TP391.41
DOI:
10.3969/j.issn.1001-4616.2018.03.001
Abstract:
Usually the static or dynamic characteristics of the flame is extracted for flame detection. But the traditional characteristics can not fully describe the characteristics of flame,which leads to the reduction of recognition accuracy. To solve this problem,a flame detection based on Faster R-CNN model is proposed in this paper. First,the candidate region of the flame is extracted by RPN. Then the convolution and pool operation of candidate regions are performed to extract the flame characteristics. Finally,Fast R-CNN is used to identify the flame. The experimental results show that the method can automatically extract the flame characteristics,effectively improve the accuracy of flame recognition in the complex background,and have good generalization ability and robustness.

References:

[1] 相徐斌. 基于视频的烟雾检测算法研究[D]. 杭州:浙江大学,2017.
[2]熊国良,苏兆熙,刘举平,等. 火焰特性识别的Matlab实现方法[J]. 计算机工程与科学,2013,35(7):131-136.
[3]严云洋,吴茜茵,杜静,等. 基于色彩和闪频特征的视频火焰检测[J]. 计算机科学与探索,2014,8(10):1271-1279.
[4]胡勤,陈琛,刘敏. 一种基于动态纹理的烟雾和火焰检测方法[J]. 消防科学与技术,2014,33(6):667-669.
[5]陈磊,黄继风. 基于视频的火焰检测方法[J]. 计算机工程与设计,2014,35(9):3143-3147.
[6]STADLER A,WINDISCH T,DIEPOLD K. Comparison of intensity flickering features for video based flame detection algorithms[J]. Fire safety journal,2014,66:1-7.
[7]王华利,邹俊忠,张见,等. 基于深度卷积神经网络的快速图像分类算法[J]. 计算机工程与应用,2017,53(13):181-188.
[8]GIRSHICK R,DONAHUE J,DARRELL T,et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Trans Pattern Anal Mach Intell,2015,38(1):142-158.
[9]曹诗雨,刘跃虎,李辛昭. 基于Fast R-CNN的车辆目标检测[J]. 中国图象图形学报,2017,22(5):671-677.
[10]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis & machine intelligence,2017,39(6):1137.
[11]JIA Y,SHELHAMER E,DONAHUE S,et al. Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando,Florida:ACM,2014.
[12]CHMELAR P,BENKRID A. Efficiency of HSV over RGB Gaussian Mixture Model for fire detection[C]//Radioelektronika. Slovakia:IEEE,2014.
[13]RONG J Z,ZHOU D C,YAO W,et al. Fire flame detection based on GICA and target tracking[J]. Optics & laser technology,2013,47:283-291.
[14]FRIZZI S,KAABI R,BOUCHOUICHA M,et al. Convolutional neural network for video fire and smoke detection[C]//Industrial Electronics Society,IECON 2016-42nd Annual Conference of the IEEE. USA:IEEE,2016.

Memo

Memo:
-
Last Update: 2018-11-19