[1] 相徐斌. 基于视频的烟雾检测算法研究[D]. 杭州:浙江大学,2017.
[2]熊国良,苏兆熙,刘举平,等. 火焰特性识别的Matlab实现方法[J]. 计算机工程与科学,2013,35(7):131-136.
[3]严云洋,吴茜茵,杜静,等. 基于色彩和闪频特征的视频火焰检测[J]. 计算机科学与探索,2014,8(10):1271-1279.
[4]胡勤,陈琛,刘敏. 一种基于动态纹理的烟雾和火焰检测方法[J]. 消防科学与技术,2014,33(6):667-669.
[5]陈磊,黄继风. 基于视频的火焰检测方法[J]. 计算机工程与设计,2014,35(9):3143-3147.
[6]STADLER A,WINDISCH T,DIEPOLD K. Comparison of intensity flickering features for video based flame detection algorithms[J]. Fire safety journal,2014,66:1-7.
[7]王华利,邹俊忠,张见,等. 基于深度卷积神经网络的快速图像分类算法[J]. 计算机工程与应用,2017,53(13):181-188.
[8]GIRSHICK R,DONAHUE J,DARRELL T,et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Trans Pattern Anal Mach Intell,2015,38(1):142-158.
[9]曹诗雨,刘跃虎,李辛昭. 基于Fast R-CNN的车辆目标检测[J]. 中国图象图形学报,2017,22(5):671-677.
[10]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis & machine intelligence,2017,39(6):1137.
[11]JIA Y,SHELHAMER E,DONAHUE S,et al. Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando,Florida:ACM,2014.
[12]CHMELAR P,BENKRID A. Efficiency of HSV over RGB Gaussian Mixture Model for fire detection[C]//Radioelektronika. Slovakia:IEEE,2014.
[13]RONG J Z,ZHOU D C,YAO W,et al. Fire flame detection based on GICA and target tracking[J]. Optics & laser technology,2013,47:283-291.
[14]FRIZZI S,KAABI R,BOUCHOUICHA M,et al. Convolutional neural network for video fire and smoke detection[C]//Industrial Electronics Society,IECON 2016-42nd Annual Conference of the IEEE. USA:IEEE,2016.