|Table of Contents|

Automatic Classification of Meningioma Subtype ImageBased on Convolutional Neural Network(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年03期
Page:
22-
Research Field:
·人工智能算法与应用专栏·
Publishing date:

Info

Title:
Automatic Classification of Meningioma Subtype ImageBased on Convolutional Neural Network
Author(s):
Fang QianhaoZhu HongHe HanzhiHu Junfeng
School of Medical Information,Xuzhou Medical University,Xuzhou 221004,China
Keywords:
meningiomaconvolutional neural networkLeNet-5meningioma subtype image classification
PACS:
TP181
DOI:
10.3969/j.issn.1001-4616.2018.03.004
Abstract:
Meningioma is the second most common tumor in the brain. The preoperative grading of meningioma can help develop clinical treatment plans and evaluate prognosis. In this paper,the LeNet-5 model of the convolutional neural network is improved from several aspects which include softmax layer,network structure,iterative rate of decline,and epoch for automatic classification of subtype images of meningioma. The model does not require the extraction of diseased tissue,which greatly improves the efficiency of automatic classification of meningioma images. Experiments show that the improved convolutional neural network model has a good effect on the classification of meningioma subtype images,and the highest correct rate reaches 91.18%.

References:

[1] 黄冠又,巫玉娟. Wnt/β-catenin信号传导通路与脑膜瘤研究进展[J]. 中国医学创新,2013(33):162-164.
[2]关鉴,马万辉,向科. 脑膜瘤的MRI征象与病理分级的关系[J]. 中国医药科学,2014(17):100-102.
[3]谢韬,金法,姜晓丹,等. 120例脑膜瘤病理表型与肿瘤分级及预后的相关性研究[J]. 东南大学学报(医学版),2016,35(5):688-691.
[4]HINTON G E,RUSLAN R S. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.
[5]林妙真. 基于深度学习的人脸识别研究[D]. 大连:大连理工大学,2013.
[6]庞荣. 深度神经网络算法研究及应用[D]. 成都:西南交通大学,2016.
[7]唐涔轩,王晓东,姚宇. 基于深度学习与医学先验知识的超声心动图切片识别[J]. 计算机应用,2017,37(s1):211-214.
[8]应俊,杨策源,李全政,等. 基于深度学习方法的慢性阻塞性肺疾病危重度分类研究[J]. 生物医学工程学杂志,2017(6):842-849.
[9]余镇,吴凌云,倪东,等. 基于深度学习的胎儿颜面部超声标准切面自动识别[J]. 中国生物医学工程学报,2017,36(3):267-275.
[10]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.
[11]KIM B C,YU S S,SUK H I. Deep feature learning for pulmonary nodule classification in a lung CT[C]//International Winter Conference on Brain-Computer Interface,Busan,2016. Piscataway,NJ:IEEE,2016:1-3.
[12]WANG D,KHOSLA A,GARGEYA R,et al. Deep learning for identifying metastatic breast cancer[EB/OL]. [2016-06-18]. https://arxiv.org/abs/1606.05718v1.
[13]GULSHAN V,PENG L,CORAM M,et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. Jama,2016,316(22):2402.
[14]ESTEVA A,KUPREL B,NOVOA R A,et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.
[15]李智. 脑膜瘤的组织病理学诊断与鉴别诊断要点[J]. 广东医学,2017,38(24):3713-3719.

Memo

Memo:
-
Last Update: 2018-11-19